Hedden, Abigail S; Mazzaro, Gregory J
(Ed.)
Human activity recognition (HAR) with radar-based technologies has become a popular research area in the past decade. However, the objective of these studies are often to classify human activity for anyone; thus, models are trained using data spanning as broad a swath of people and mobility profiles as possible. In contrast, applications of HAR and gait analysis to remote health monitoring require characterization of the person-specific qualities of a person’s activities and gait, which greatly depends on age, health and agility. In fact, the speed or agility with which a person moves can be an important health indicator. In this study, we propose a multi-input multi-task deep learning framework to simultaneously learn a person’s activity and agility. In this initial study, we consider three different agility states: slow, nominal, and fast. It is shown that joint learning of agility and activity improves the classification accuracy for both activity and agility recognition tasks. To the best of our knowledge, this study is the first work considering both agility characterization and personalized activity recognition using RF sensing.
more »
« less
An official website of the United States government

