skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Internet Science Moonshot: Expanding BGP Data Horizons
Dramatic growth in Internet connectivity poses a challenge for the resource-constrained data collection efforts that support scientific and operational analysis of interdomain rout- ing. Inspired by tradeoffs made in other disciplines, we explore a fundamental reconceptualization to how we design public BGP data collection architectures: an overshoot-and-discard approach that can accommodate an order of magnitude increase in vantage points by discarding redundant data shortly after its collection. As defining redundant depends on the context, we design algorithms that filter redundant updates without optimizing for one objective, and evaluate our approach in terms of detecting two noteworthy phenomena using BGP data: AS-topology mapping and hijacks. Our approach can generalize to other types of Internet data (e.g., traceroute, traffic). We offer this study as a first step to a potentially new area of Internet measurement research.  more » « less
Award ID(s):
2120399
PAR ID:
10523224
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400704154
Page Range / eLocation ID:
102 to 108
Subject(s) / Keyword(s):
Routing Security, Internet measurement, BGP
Format(s):
Medium: X
Location:
Cambridge MA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    An attacker can obtain a valid TLS certificate for a domain by hijacking communication between a certificate authority (CA) and a victim domain. Performing domain validation from multiple vantage points can defend against these attacks. We explore the design space of multi-vantage-point domain validation to achieve (1) security via sufficiently diverse vantage points, (2) performance by ensuring low latency and overhead in certificate issuance, (3) manageability by complying with CA/Browser forum requirements, and requiring minimal changes to CA operations, and (4) a low benign failure rate for legitimate requests. Our opensource implementation was deployed by the Let's Encrypt CA in February 2020, and has since secured the issuance of more than half a billion certificates during the first year of its deployment. Using real-world operational data from Let's Encrypt, we show that our approach has negligible latency and communication overhead, and a benign failure rate comparable to conventional designs with one vantage point. Finally, we evaluate the security improvements using a combination of ethically conducted real-world BGP hijacks, Internet-scale traceroute experiments, and a novel BGP simulation framework. We show that multi-vantage-point domain validation can thwart the vast majority of BGP attacks. Our work motivates the deployment of multi-vantage-point domain validation across the CA ecosystem to strengthen TLS certificate issuance and user privacy. 
    more » « less
  2. An attacker can obtain a valid TLS certificate for a domain by hijacking communication between a certificate authority (CA) and a victim domain. Performing domain validation from multiple vantage points can defend against these attacks. We explore the design space of multi-vantage-point domain validation to achieve (1) security via sufficiently diverse vantage points, (2) performance by ensuring low latency and overhead in certificate issuance, (3) manageability by complying with CA/Browser forum requirements, and requiring minimal changes to CA operations, and (4) a low benign failure rate for legitimate requests. Our open- source implementation was deployed by the Let’s Encrypt CA in February 2020, and has since secured the issuance of more than half a billion certificates during the first year of its deployment. Using real-world operational data from Let’s Encrypt, we show that our approach has negligible latency and communication overhead, and a benign failure rate comparable to conventional designs with one vantage point. Finally, we evaluate the security improvements using a combination of ethically conducted real-world BGP hijacks, Internet-scale traceroute experiments, and a novel BGP simulation framework. We show that multi-vantage-point domain validation can thwart the vast majority of BGP attacks. Our work motivates the deployment of multi-vantage-point domain validation across the CA ecosystem to strengthen TLS certificate issuance and user privacy. 
    more » « less
  3. BGP was initially created assuming by default that all ASes are equal. Its policies and protocols, namely BGP, evolved to accommodate a hierarchical Internet, allowing an autonomous system more control over outgoing traffic than incoming traffic. However, the modern Internet is flat, making BGP asymmetrical. In particular, routing decisions are mostly in the hands of traffic sources (i.e., content providers). This leads to suboptimal routing decisions as traffic sources can only estimate route capacity at the destination (i.e., ISP). In this paper, we present the design of Unison, a system that allows an ISP to jointly optimize its intra-domain routes and inter-domain routes, in collaboration with content providers. Unison provides the ISP operator and the neighbors of the ISP with an abstraction ISP network in the form of a virtual switch. This abstraction allows the content providers to program the virtual switch with their requirements. It also allows the ISP to use that information to optimize the overall performance of its network. We show through extensive simulations that Unison can improve ISP throughput by up to 30% through cooperation with content providers. We also show that cooperation of content providers only improves performance, even for non-cooperating content providers (e.g., a single cooperating neighbour can improve ISP throughput by up to 6%). 
    more » « less
  4. Withdrawal suppression has been a known weakness of BGP for over a decade. It has a significant detrimental impact on both the reliability and security of inter-domain routing on the Internet. This paper presents Route Status Transparency (RoST), the first design that efficiently and securely thwarts withdrawal suppression misconfigurations and attacks. RoST allows ASes to efficiently verify whether a route has been withdrawn; it is compatible with BGP as well as with BGP security enhancements. We use simulations on the Internet’s AS-level topology to evaluate the benefits from adopting RoST. We use an extensive real-world BGP announcements dataset to show that it is efficient in terms of storage, bandwidth, and computational requirements. 
    more » « less
  5. The Border Gateway Protocol (BGP) offers several knobs to control routing decisions, but they are coarse-grained and only affect routes received from neighboring Autonomous Systems (AS). To enhance policy expressiveness, BGP was extended with thecommunitiesattribute, allowing an AS to attach metadata to routes and influence the routing decisions of a remote AS. The metadata can carryinformationto (e.g., where a route was received) or request anactionfrom a remote AS (e.g., not to export a route to one of its neighbors). Unfortunately, the semantics of BGP communities are not standardized, lack universal rules, and are poorly documented. In this work, we design and evaluate algorithms to automatically uncover BGPaction communitiesand ASes that violate standard practices by consistently using theinformation communitiesof other ASes, revealing undocumented relationships between them (e.g., siblings). Our experimental evaluation with billions of route announcements from public BGP route collectors from 2018 to 2023 uncovers previously unknown AS relationships and shows that our algorithm for identifying action communities achieves average precision and recall of 92.5% and 86.5%, respectively. 
    more » « less