skip to main content


This content will become publicly available on July 14, 2025

Title: Robust Electrothermal Switching of Optical Phase‐Change Materials through Computer‐Aided Adaptive Pulse Optimization

Electrically tunable optical devices present diverse functionalities for manipulating electromagnetic waves by leveraging elements capable of reversibly switching between different optical states. This adaptability in adjusting their responses to electromagnetic waves after fabrication is crucial for developing more efficient and compact optical systems for a broad range of applications, including sensing, imaging, telecommunications, and data storage. Chalcogenide‐based phase‐change materials (PCMs) have shown great promise due to their stable, nonvolatile phase transition between amorphous and crystalline states. Nonetheless, optimizing the switching parameters of PCM devices and maintaining their stable operation over thousands of cycles with minimal variation can be challenging. Herein, the critical role of PCM pattern as well as electrical pulse form in achieving reliable and stable switching is reported on, extending the operational lifetime of the device beyond 13000 switching events. To achieve this, a computer‐aided algorithm that monitors optical changes in the device and adjusts the applied voltage in accordance with the phase transformation process is developed, thereby significantly enhancing the lifetime of these reconfigurable devices. The findings reveal that patterned PCM structures show significantly higher endurance compared to blanket PCM thin films.

 
more » « less
Award ID(s):
2225968
PAR ID:
10523320
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (RRL) – Rapid Research Letters
ISSN:
1862-6254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide‐based phase‐change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid‐state structural phases. Although significant efforts have been devoted to accurate simulation of PCM‐based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid‐phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above‐mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM‐based photonic devices and can inform the development of more efficient reconfigurable optics.

     
    more » « less
  2. Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide‐based phase change materials (PCMs) offer great promise due to their non‐volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub‐micron‐sized. To incorporate phase change materials into free‐space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non‐mechanical, non‐volatile transmissive filter based on low‐loss PCMs with a 200 × 200 µm2switching area. The device/metafilter can be consistently switched between low‐ and high‐transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free‐space reconfigurable optics based on PCMs.

     
    more » « less
  3. The ever-growing data traffic requires greater transmission bandwidth and better energy efficiency in chip scale interconnects. The emerging transistor-laser-based electronic-photonic processing platform stands out for its high electrical-to-optical efficiency. Because transistor lasers operate best at 980 nm, efficient optical interconnects at this wavelength need to be developed for such energy-efficient computing platforms. Phase change materials (PCMs) are good candidates for achieving non-volatile, reconfigurable, zero-static power optical switching. Having bi-stable states under room temperature, a PCM has its permittivity significantly different between its crystalline and amorphous phases. The authors propose to develop a reconfigurable 1 x 2 optical switch by utilizing low loss GeTe PCM to pave the way for the transistor-laser platform at 980 nm. The non-volatility of the proposed device will open up opportunities for other interesting applications such as non-volatile optical memory and the optical equivalence of the field programmable gate array (FPGA). 
    more » « less
  4. Abstract

    The generation of rapidly tunable optical vortex (OV) beams is one of the most demanding research areas of the present era as they possess orbital angular momentum (OAM) with additional degrees of freedom that can be exploited to enhance signal‐carrying capacity by using mode division multiplexing and information encoding in optical communication. Particularly, rapidly tunable OAM devices at a fixed wavelength in the telecom band stir extensive interest among researchers for both classical and quantum applications. This article demonstrates the realistic design of a Si‐integrated photonic device for rapidly tunable OAM wave generation at a 1550‐nm wavelength by using an ultra‐low‐loss phase change material (PCM) embedded with a Si‐ring resonator with angular gratings. Different OAM modes are achieved by tuning the effective refractive index using rapid electrical switching of Sb2Se3 film from amorphous to crystalline states and vice versa. The generation of OAM waves relies on a traveling wave modulation of the refractive index of the micro‐ring, which breaks the degeneracy of oppositely oriented whispering gallery modes. The proposed device is capable of producing rapidly tunable OV beams, carrying different OAM modes by using electrically controllable switching of ultra‐low‐loss PCM Sb2Se3.

     
    more » « less
  5. Integration of phase change material (PCM) with photonic integrated circuits can transform large-scale photonic systems by providing non-volatile control over phase and amplitude. The next generation of commercial silicon photonic processes can benefit from the addition of PCM to enable ultra-low power, highly reconfigurable, and compact photonic integrated circuits for large-scale applications. Despite all the advantages of PCM-based photonics, today’s commercial foundries do not provide them in their silicon photonic processes yet. We demonstrate the first-ever electrically programmable PCM device that is monolithically post-processed in a commercial foundry silicon photonics process using a few fabrication steps and coarse-resolution photolithography. These devices achieved 1.4 dB/μm of amplitude switching contrast using a thin layer of 12.5 nm GeSbTe in this work. We have also characterized the reconfiguration speed as well as repeatability of these devices over 20,000 switching cycles. Our solution enables non-volatile photonic VLSI systems that can be fabricated at low cost and high reliability in a commercial foundry process, paving the way for the development of non-volatile programmable photonic integrated circuits for a variety of emerging applications.

     
    more » « less