skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrically Reconfigurable Phase‐Change Transmissive Metasurface
Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide‐based phase change materials (PCMs) offer great promise due to their non‐volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub‐micron‐sized. To incorporate phase change materials into free‐space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non‐mechanical, non‐volatile transmissive filter based on low‐loss PCMs with a 200 × 200 µm2switching area. The device/metafilter can be consistently switched between low‐ and high‐transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free‐space reconfigurable optics based on PCMs.  more » « less
Award ID(s):
2132929 2210168
PAR ID:
10535047
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Advancements in nanofabrication processes have propelled nonvolatile phase change materials (PCMs) beyond storage‐class applications. They are now making headway in fields such as photonic integrated circuits (PIC), free‐space optics, and plasmonics. This shift is owed to their distinct electrical, optical, and thermal properties between their different atomic structures, which can be reversibly switched through thermal stimuli. However, the reliability of PCM‐based optical components is not yet on par with that of storage‐class devices. This is in part due to the challenges in maintaining a uniform temperature distribution across the PCM volume during phase transformation, which is essential to mitigate stress and element segregation as the device size exceeds a few micrometers. Understanding thermal transport in PCM‐based devices is thus crucial as it dictates not only the durability but also the performance and power consumption of these devices. This article reviews recent advances in the development of PCM‐based photonic devices from a thermal transport perspective and explores potential avenues to enhance device reliability. The aim is to provide insights into how PCM‐based technologies can evolve beyond storage‐class applications, maintain their functionality, and achieve longer lifetimes. 
    more » « less
  2. The ever-growing data traffic requires greater transmission bandwidth and better energy efficiency in chip scale interconnects. The emerging transistor-laser-based electronic-photonic processing platform stands out for its high electrical-to-optical efficiency. Because transistor lasers operate best at 980 nm, efficient optical interconnects at this wavelength need to be developed for such energy-efficient computing platforms. Phase change materials (PCMs) are good candidates for achieving non-volatile, reconfigurable, zero-static power optical switching. Having bi-stable states under room temperature, a PCM has its permittivity significantly different between its crystalline and amorphous phases. The authors propose to develop a reconfigurable 1 x 2 optical switch by utilizing low loss GeTe PCM to pave the way for the transistor-laser platform at 980 nm. The non-volatility of the proposed device will open up opportunities for other interesting applications such as non-volatile optical memory and the optical equivalence of the field programmable gate array (FPGA). 
    more » « less
  3. Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide‐based phase‐change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid‐state structural phases. Although significant efforts have been devoted to accurate simulation of PCM‐based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid‐phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above‐mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM‐based photonic devices and can inform the development of more efficient reconfigurable optics. 
    more » « less
  4. Programmable photonic integrated circuits are expected to play an increasingly important role in enabling high-bandwidth optical interconnects and large-scale in-memory computing as needed to support the rise of artificial intelligence and machine learning technology. To that end, chalcogenide-based non-volatile phase-change materials (PCMs) present a promising solution due to zero static power. However, high switching voltage and a small number of operating levels present serious roadblocks to the widespread adoption of PCM-programmable units. Here, we demonstrate an electrically programmable wide bandgap Sb2S3-clad silicon ring resonator using a silicon microheater at a complementary-metal–oxide–semiconductor compatible voltage of <3 V. Our device shows a low switching energy of 35.33 nJ (0.48 mJ) for amorphization (crystallization) and reversible phase transitions with high endurance (>2000 switching events) near 1550 nm. Combining a volatile thermo-optic effect with non-volatile PCMs, we demonstrate 7-bit (127 levels) operation with excellent repeatability and reduced power consumption. Our demonstration of low-voltage and low-energy operation, combined with the hybrid volatile–nonvolatile approach, marks a significant step toward integrating PCM-based programmable units in large-scale optical interconnects. 
    more » « less
  5. Abstract Optoelectronics are crucial for developing energy‐efficient chip technology, with phase‐change materials (PCMs) emerging as promising candidates for reconfigurable components in photonic integrated circuits, such as nonvolatile phase shifters. Antimony sulfide (Sb2S3) stands out due to its low optical loss and considerable phase‐shifting properties, along with the non‐volatility of both phases. This study demonstrates that the crystallization kinetics of Sb2S3can be switched from growth‐driven to nucleation‐driven by altering the sample dimension from bulk to film. This tuning of the crystallization process is critical for optical switching applications requiring control over partial crystallization. Calorimetric measurements with heating rates spanning over six orders of magnitude, reveal that, unlike conventional PCMs that crystallize below the glass transition, Sb2S3exhibits a measurable glass transition prior to crystallization from the undercooled liquid (UCL) phase. The investigation of isothermal crystallization kinetics provides insights into nucleation rates and crystal growth velocities while confirming the shift to nucleation‐driven behavior at reduced film thicknesses—an essential aspect for effective device engineering. A fundamental difference in chemical bonding mechanisms was identified between Sb2S3, which exhibits covalent bonding in both material phases, and other PCMs, such as GeTe and Ge2Sb2Te5, which demonstrate pronounced bonding alterations upon crystallization. 
    more » « less