Plasma-based acceleration (PBA) is being considered for a next generation linear collider (LC). In some PBA-LC designs for the electron arm, the extreme beam parameters are expected to trigger background ion motion within the witness beam, which can lead to longitudinally varying nonlinear focusing forces and result in an unacceptable emittance growth of the beam. To mitigate this, we propose to use quasi-adiabatic plasma density ramps as matching sections at the entrance and exit of each stage. We match the witness electron beam to the low density plasma entrance, where the beam initially has a large matched spot size so the ion motion effects are relatively small. As the beam propagates in the plasma density upramp, it is quasi-adiabatically focused, and its distribution maintains a non-Gaussian equilibrium distribution in each longitudinal slice throughout the process, even when severe ion collapse has occurred. This only causes small amounts of slice emittance growth. The phase mixing between slices with different betatron frequencies leads to additional projected emittance growth within the acceleration stage. A density downramp at the exit of an acceleration section can eliminate much of the slice and projected emittance growth as the beam and ion motion adiabatically defocuses and decreases, respectively. Simulation results from QuickPIC with Azimuthal Decomposition show that within a single acceleration stage with a 25 GeV energy gain, this concept can limit the projected emittance growth to only ∼2% for a 25 GeV, 100 nm emittance witness beam and ∼20% for a 100 GeV, 100 nm normalized emittance witness beam. The trade-off between the adiabaticity of the plasma density ramp and the initial ion motion at the entrance for a given length of the plasma density ramp is also discussed.
more »
« less
Emittance preservation in the presence of ion motion for low-to-high energy stages of a plasma based accelerator
Plasma based acceleration (PBA) is being considered for a next generation linear collider (LC). In typical AsmPBA-LC designs, the extreme beam parameters are expected to trigger background ion motion, which can lead to longitudinally varying nonlinear focusing forces and result in emittance growth of the beam. While various schemes have been proposed to mitigate this at low beam energies, a solution to minimize the emittance growth in the later high energy stages of a multistage electron acceleration arm is yet to be found. In this paper, we propose to use an adiabatic plasma density ramp as a matching section that is able to match the witness electron beam to the low-density plasma entrance, where the beam initially has a large matched spot size so the ion motion effects are relatively small. As the beam propagates in the plasma density upramp (downramp), it is adiabatically focused (defocused) and its distribution maintains an equilibrium distribution throughout the entire process even when severe ion collapse has occurred. Simulation results from QPAD show that within a single acceleration stage, this concept can limit the projected emittance growth to only ∼2% for a 25 GeV, 100 nm normalized emittance witness beam and ∼20% for a 100 GeV, 100 nm normalized emittance witness beam.
more »
« less
- Award ID(s):
- 2108970
- PAR ID:
- 10523509
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Accelerators and Beams
- Volume:
- 26
- Issue:
- 12
- ISSN:
- 2469-9888
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).more » « less
-
Pilat, Fulvia; Fischer, Wolfram; Saethre, Robert; Anisimov, Petr; Andrian, Ivan (Ed.)At the Facility for Advanced Accelerator Experimental Tests (FACET-II) accelerator, a pair of 10 GeV high-current electron beams is used to investigate Plasma Wakefield Acceleration (PWFA) in plasmas of different lengths. While PWFA has achieved astonishingly high accelerating gradients of tens of GeV/m, matching the electron beam into the plasma wake is necessary to achieve a beam quality required for precise tuning of future high energy linear accelerators. The purpose of this study was to explore how start-to-end simulations could be used to optimize two important measures of beam quality, namely maximizing energy gain and minimizing transverse emittance growth in a 2 cm long plasma. These two beam parameters were investigated with an in-depth model of the FACET-II accelerator using numerical optimization. The results presented in the paper demonstrate the importance of utilizing beam-transport simulations in tandem with particle-in-cell simulations and provide insight into optimizing these two important beam parameters without the need to devote significant accelerator physics time tuning the FACET-II accelerator.more » « less
-
Plasma-based acceleration has emerged as a promising candidate as an accelerator technology for a future linear collider or a next-generation light source. We consider the plasma wakefield accelerator (PWFA) concept where a plasma wave wake is excited by a particle beam and a trailing beam surfs on the wake. For a linear collider, the energy transfer efficiency from the drive beam to the wake and from the wake to the trailing beam must be large, while the emittance and energy spread of the trailing bunch must be preserved. One way to simultaneously achieve this when accelerating electrons is to use longitudinally shaped bunches and nonlinear wakes. In the linear regime, there is an analytical formalism to obtain the optimal shapes. In the nonlinear regime, however, the optimal shape of the driver to maximize the energy transfer efficiency cannot be precisely obtained because currently no theory describes the wake structure and excitation process for all degrees of nonlinearity. In addition, the ion channel radius is not well defined at the front of the wake where the plasma electrons are not fully blown out by the drive beam. We present results using a novel optimization method to effectively determine a current profile for the drive and trailing beam in PWFA that provides low energy spread, low emittance, and high acceleration efficiency. We parameterize the longitudinal beam current profile as a piecewise-linear function and define optimization objectives. For the trailing beam, the algorithm converges quickly to a nearly inverse trapezoidal trailing beam current profile similar to that predicted by the ultrarelativistic limit of the nonlinear wakefield theory. For the drive beam, the beam profile found by the optimization in the nonlinear regime that maximizes the transformer ratio also resembles that predicted by linear theory. The current profiles found from the optimization method provide higher transformer ratios compared with the linear ramp predicted by the relativistic limit of the nonlinear theory.more » « less
-
The paper [R .T. Sandberg and A. G. R. Thomas, Phys. Rev. Lett. 130, 085001 (2023)] proposed a scheme to generate ultrashort, high energy pulses of XUV photons through dephasingless photon acceleration in a beam-driven plasma wakefield. An ultrashort laser pulse is placed in the plasma wake behind a relativistic electron bunch so that it experiences a density gradient and therefore shifts up in frequency. Using a tapered density profile provides phase-matching between the driver and witness pulses. In this paper, we study via particle-in-cell simulation the limits, practical realization, and 3D considerations for beam-driven photon acceleration using the tapered plasma density profile. We study increased efficiency by the use of a chirped drive pulse, establishing the necessity of the density profile shape we derived as opposed to a simple linear ramp, but also demonstrating that a piecewise representation of the profile—as could be experimentally achieved by a series of gas cells—is adequate for achieving phase matching. Scalings to even higher frequency shifts are given.more » « less