Abstract Previous band structure calculations predicted Ag3AuSe2to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2and its transport and optical properties. Single crystals of Ag3AuSe2were synthesized by slow‐cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2is a highly resistive semiconductor with a band gap and activation energy around 0.3 eV. Our first‐principles calculations show that the experimentally determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation. 
                        more » 
                        « less   
                    
                            
                            α-Quartz Phase Stabilization, Surface Texturing, and Tunable Optical Properties of Nanocrystalline GeO 2 Films Made by Pulsed-Laser Deposition: Implications for Optical and Optoelectronic Applications
                        
                    - PAR ID:
- 10523539
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- ACS Applied Optical Materials
- Volume:
- 1
- Issue:
- 11
- ISSN:
- 2771-9855
- Page Range / eLocation ID:
- 1761 to 1776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            CaF2, BaF2, and MgF2are low-index, infrared-transparent materials that are extensively used in optical systems. Despite their technological importance, a systematic investigation into the temperature dependence of their optical properties is lacking. In this study, spectroscopic ellipsometry was used to obtain the refractive index of monocrystalline CaF2, BaF2, and MgF2for wavelengths between 220 nm and 1700 nm, and for temperatures between 21 °C and 368 °C. The raw ellipsometric data was fit to a Sellmeier model with temperature-dependent oscillator terms to extract the real part of the refractive index of each material. The refractive index of CaF2and BaF2was observed to decrease linearly with increasing temperature, which can be largely attributed to a reduction in the mass density due to thermal expansion. In contrast, the refractive index of MgF2was found to vary nonlinearly with temperature, which suggests competing effects from the material’s electronic polarizability. The temperature-dependent refractive index data reported here provide a finely-resolved mapping of the thermo-optic coefficient for these three materials, which could inform the development of optical devices operating at elevated or unsteady temperatures.more » « less
- 
            Abstract A comprehensive experimental study on optical properties and photocarrier dynamics in Bi2O2Se monolayers and nanoplates is presented. Large and uniform Bi2O2Se nanoplates with various thicknesses down to the monolayer limit are fabricated. In nanoplates, a direct optical transition near 720 nm is identified by optical transmission, photoluminescence, and transient absorption spectroscopic measurements and is attributed to the transition between the valence and conduction bands in the Γ valley. Time‐resolved differential reflection measurements reveal ultrafast carrier thermalization and energy relaxation processes and a photocarrier recombination lifetime of about 200 ps in nanoplates. Furthermore, by spatially resolving the differential reflection signal, a photocarrier diffusion coefficient of about 4.8 cm2s−1is obtained, corresponding to a mobility of about 180 cm2V−1s−1. A similar direct transition is also observed in monolayer Bi2O2Se, suggesting that the states in the Γ valley do not change significantly with the thickness. The temporal dynamics of the excitons in the monolayer is quite different from the nanoplates, with a strong saturation effect and fast exciton–exciton annihilation at high densities. Spatially and temporally resolved measurements yield an exciton diffusion coefficient of about 20 cm2s−1.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    