While a large amount of research has been performed in recent years on characterizing wildfire ashes and determining the hydrological properties of slopes post-wildfire, fewer studies have concentrated on the overall engineering behavior of ash. This study addresses this need by examining the compaction, shear strength, and hydraulic behavior of wildfire ash and ash/soil layered specimens. Unique chemical and physical characteristics of wildfire ashes were shown to influence the ash engineering behavior. Ashes in the as-received condition have a silty sand grain size distribution with higher than expected surface areas (>1 m2/g). Chemically, ashes contained silica, aluminum, calcium (in the form of carbonates) and residual organic carbon from incomplete combustion. Maximum dry unit weights ranged from 13 – 16 kN/m3 at optimum moisture contents between 20 and 30%. Hydraulic conductivity of samples varied between 10^-4 and 10^-5 cm/s. A wet deposited layer of fine-grained ash on top of compacted sand reduced the hydraulic conductivity of sand by 1 – 3 orders of magnitude. Shear strength of ash/sand layered specimens demonstrated that ash was fairly stiff, with an average friction angle of 28 degrees. Void ratios of specimens were consistently higher than expected for a silty sand fabric (usually above 1.0). Ash particles were irregular in shape with fibrous textures and had electrostatic attractive tendencies. The authors suspect that the unique chemistries present in ash (notably carbonates and organic char) contributed to the loose fabric structure and engineering properties that were atypical of a silty sand grain size distribution
more »
« less
Wildfire Ash Composition and Engineering Behavior
After a wildfire event, ash is a newly formed surficial soil layer with microscale properties such as roughness, morphology, and chemical composition that may impact how ashes form fabrics in situ and so affect the overall hydrological conditions of a burned area (infiltration capacity, permeability, etc.). To examine the effects of ash microscale properties on macroscale behavior, eight wildfire ash samples from California were characterized physically (specific gravity, specific surface area, particle size, etc.), chemically (elemental composition, organic and inorganic carbon content, etc.), and geotechnically (strength, compaction, saturated hydraulic conductivity, etc.). The tested ashes were found to contain predominantly organic unburned carbons and carbonates derived from the combustion of calcium-oxalate rich fuels in temperatures likely ranging from 300°C to 500°C. Ashes had high specific surface areas because morphologically, particles had highly texturized and porous surfaces. Additional water was necessary to coat the particle surfaces, which led to high liquid limits and compaction optimum moisture contents. Hydraulic conductivity values were within range for silty sands (10^−5–10^−3 cm/s), and specimens had friction angles near 30°. However, tested ashes consistently demonstrated high void ratios and low bulk densities during testing for strength, hydraulic conductivity, and compaction. These anomalies were attributed to unusual carbonate morphologies; the high interparticle friction of these phases allowed ashes to form looser fabrics than a typical silty sand and contributed to the measured high void ratios, low maximum dry unit weights, and high friction angles. Overall, we hypothesize that the relative amounts of inorganic versus organic constituents in our wildfire ash samples affected how the ashes formed fabrics and so affected their geotechnical properties.
more »
« less
- Award ID(s):
- 2138449
- PAR ID:
- 10523545
- Publisher / Repository:
- Journal of Geotechnical and Geoenvironmental Engineering
- Date Published:
- Journal Name:
- Journal of Geotechnical and Geoenvironmental Engineering
- Volume:
- 150
- Issue:
- 8
- ISSN:
- 1090-0241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Caldor fire burned ~222,000 acres of the Eastern Sierra Nevada during summer–fall 2021. We evaluated the effects of this “megafire” on the physical properties of a sandy soil developed from glacial tills to document fire-induced soil modifications in this region. We measured soil water retention and hydraulic conductivity functions as well as the thermal properties of five core samples from control (unburned) areas and eight core samples from burned soil of the same soil unit. Soil water repellency was measured in terms of water drop penetration time (WDPT) in the field and apparent contact angle in the laboratory on control and burned soil as well as ash samples. Soil organic matter (SOM) and particle and aggregate size distributions were determined on control and burned soil samples. Additionally, scanning electron microscopy (SEM) was used to image microaggregates of control and burned soil samples. We found a significant difference in SOM content and sand and silt aggregate size distribution between control and burned samples, which we associated with the disintegration of microaggregates due to the fire. We found no significant difference between soil water retention and hydraulic conductivity functions of control and burned soil but observed greater variation in saturated hydraulic conductivity and systematic shifts in thermal conductivity functions of burned compared to control samples. WDPT and apparent contact angle values were significantly higher for burned soils, indicating the occurrence of fire-induced soil hydrophobicity (FISH). Interestingly, the average apparent contact angle of the control soil was >90°, indicating that even the unburned soil was hydrophobic. However, the ash on top of the burned soil was found to be hydrophilic, having apparent contact angles <10°. Our results indicate that SOM and microaggregates were readily affected by the Caldor fire, even for sandy soil with a weakly developed structure. The fire seemed to have moderated thermal properties, significantly and soil wettability but had only minimal effects on water retention and hydraulic conductivity functions. Our findings demonstrate the complex nature of fire-soil interactions in a natural environment and highlight the need for additional investigation into the causes and processes associated with FISH and structure alterations due to fire to improve our ability to rapidly determine potential problem areas in terms of hazards commonly associated with fire-affected soils.more » « less
-
Fires are an integral part of many terrestrial ecosystems and have a strong impact on soil properties. While reports of topsoil magnetic enhancement after fires vary widely, recent evidence suggests that plant ashes provide the most significant source of magnetic enhancement after burning. To investigate the magnetic properties of burnt plant material, samples of individual plant species from Iceland and Germany were cleaned and combusted at various temperatures prior to rock magnetic and geochemical characterization. Mass-normalized saturation magnetization values for burnt plant residues increase with the extent of burning in nearly all samples. However, when normalized to the loss on ignition, fewer than half of ash and charcoal samples display magnetic enhancement relative to intact plant material. Thus, while magnetic mineral concentrations generally increase, changes in the total amount of magnetic material are much more variable. Elemental analyses of Icelandic samples reveal that both total plant Fe and saturation magnetization are strongly correlated with Ti and Al, indicating that most of the Fe-bearing magnetic phases originate from inorganic material such as soil and atmospheric dust. Electron microscopy confirmed that inorganic particulate matter remains on most plant surfaces after cleaning. Plants with more textured leaf surfaces retain more dust, and ash from these samples tend to exhibit higher saturation magnetization and metal concentrations. Magnetic properties of plant ash therefore result from the thermal transformation of Fe in both organic compounds and inorganic particulate matter, which become concentrated on a mass basis when organic matter is combusted. These results indicate that the soil magnetic response to burning will vary among sites and regions as a function of 1) fire intensity, 2) the local composition of dust and soil particles on leaf surfaces, and 3) vegetation type and consequent differences in leaf morphologies.more » « less
-
Methods to sequester and store atmospheric CO2 are critical to combat climate change. Alkaline-rich bioashes are potential carbon fixing materials. This work investigates potential co-benefits from mineralizing carbon in biomass ashes and partially replacing high embodied greenhouse gas (GHG) Portland cement (PC) in cement-based materials with these ashes. Specifically, rice hull ash (RHA), wheat straw ash (WSA), and sugarcane bagasse ash (SBA) were treated to mineralize carbon, and their experimental carbon content was compared to modeled potential carbonation. To understand changes in the cement-based storage materials, mortars made with CO2-treated WSA and RHA were experimentally compared to PC-only mortars and mortars made with ashes without prior CO2 treatment. Life cycle assessment methodology was applied to understand potential reductions in GHG emissions. The modeled carbonation was ∼18 g-CO2/kg-RHA and ∼180 g-CO2/kg-WSA. Ashes oxidized at 500 °C had the largest measured carbon content (5.4 g-carbon/kg-RHA and 35.3 g-carbon/kg-WSA). This carbon appeared to be predominantly residual from the biomass. Isothermal calorimetry showed RHA-PC pastes had similar heat of hydration to PC-pastes, while WSA-PC pastes exhibited an early (at ∼1.5 min) endothermic dip. Mortars with 5 % and 15 % RHA replacement had 1–12 % higher compressive strength at 28 days than PC-only mortars, and milled WSA mortars with 5 % replacement had 3 % higher strength. A loss in strength was noted for the milled 15 % WSA, the CO2-treated 5 %, and the 15 % WSA mortars. Modeled reductions in GHG emissions from CO2-treated ashes were, however, marginal (<1 %) relative to the untreated ashes.more » « less
-
To promote the sustainable development of eco-efficient calcium sulfoaluminate (CSA) cements through the partial replacement of the CSA clinker with supplementary cementitious waste products, the effects of coal fly ashes on the early-age and mature-age properties of a calcium sulfoaluminate (CSA)-based cement paste were investigated. The impacts of both Class C and Class F fly ashes on the rheological properties, hydration kinetics, and compressive strength development of CSA cement paste were studied. Rheology-based workability parameters, representing the rate of loss of flowability, the rate of hardening, and the placement limit, were characterized for the pastes prepared with fixed water-to-cement (w/c) and fixed water-to-binder (w/b) ratios. The results indicate a slight improvement in the workability of the CSA paste by fly ash addition at a fixed w/b ratio. The isothermal calorimetry studies show a higher heat of hydration for the Class C fly ash-modified systems compared to the Class F-modified systems. The results show that fly ash accelerates the hydration of the calcium sulfoaluminate cement pastes, chiefly due to the filler effects, rather than the pozzolanic effects. In general, ettringite is stabilized more by the addition of Class F fly ash than Class C fly ash. Both fly ashes reduced the 1-day compressive strength, but increased the 28-day strength of the CSA cement paste; meanwhile, the Class C modified pastes show a higher strength than Class F, which is attributed to the higher degree of reaction and potentially more cohesive binding C-S-H-based gels formed in the Class C fly ash modified systems. The results provide insights that support that fly ash can be employed to improve the performance of calcium sulfoaluminate cement pastes, while also enhancing cost effectiveness and sustainability.more » « less
An official website of the United States government

