Brominated disinfection byproducts (DBPs) are a concern to drinking water utilities due to their toxicity and increasing prevalence in water systems. Haloacetic acids (HAAs) are a class of DBPs that are partially regulated by the United States Environmental Protection Agency (USEPA), but regulations are likely to increase as evidenced by the brominated HAAs listed on the USEPA Fourth Unregulated Contaminant Monitoring Rule and Fifth Contaminant Candidate List. Utilities often use a pre-oxidant to assist in their treatment training, but this can lead to increased HAA formation during treatment. In this study, tap water was spiked with bromine (Br2) at varying concentrations to simulate bromine-to-chlorine ratios found in the natural environment and the DBPs that may be formed from those waters. The water was fed through a bench-scale biological filter (biofilter) with a small layer of fresh granular activated carbon (GAC) media followed by acclimated anthracite media. The HAA species studied were found to be removable by an average of 89.5% through combined GAC filtration and biofiltration. Biodegradation occurred predominantly in the first five minutes for the acclimated anthracite, with minimal additional removal observed at longer empty bed contact times (15 and 30 min EBCT). This study provides recommendations on biofilter parameters for utilities to reduce the formation of both regulated and unregulated HAAs during the drinking water treatment process.
more »
« less
Cross-national challenges and strategies for PFAS regulatory compliance in water infrastructure
Per- and polyfluoroalkyl substances (PFAS) are notable health concerns, leading to global drinking-water regulations for primary PFAS. However, conventional drinking-water treatment methods are ineffective in eliminating PFAS due to their resistance to such processes. Moreover, certain disinfection procedures may inadvertently generate perfluorinated compounds from polyfluorinated precursor compounds. With evolving regulations, there exists an immediate demand for both technical and non-technical solutions that water treatment facilities can adopt. Here, to address this critical gap, we examine the primary challenges tied to PFAS removal and introduce a detailed four-stage protocol. We advocate for non-technical strategies to improve PFAS removal practices. The treatment trains and management recommendations presented in this Perspective are also geared towards helping utilities comply with regulations concerning other chemical contaminants, including disinfection by-products. We emphasize the necessity for practical PFAS monitoring and treatment guidelines and encourage utilities to leverage all available resources, to positively impact public health through improved water quality.
more »
« less
- PAR ID:
- 10523610
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Nature water
- ISSN:
- 2731-6084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Water treatment technologies are needed that can convert per‐ and polyfluoroalkyl substances (PFAS) into inorganic products (e.g., CO2, F−) that are less toxic than parent PFAS compounds. Research on electrochemical treatment processes such as electrocoagulation and electrooxidation has demonstrated proof‐of‐concept PFAS removal and destruction. However, research has primarily been conducted in laboratory matrices that are electrochemically favorable (e.g., high initial PFAS concentration [μg/L–mg/L], high conductivity, and absence of oxidant scavengers). Electrochemical treatment is also a promising technology for treating PFAS in water treatment residuals from nondestructive technologies (e.g., ion exchange, nanofiltration, and reverse osmosis). Future electrochemical PFAS treatment research should focus on environmentally relevant PFAS concentrations (i.e., ng/L), matrix conductivity, natural organic matter impacts, short‐chain PFAS removal, transformation products analysis, and systems‐level analysis for cost evaluation. Article Impact StatementElectrochemical treatment is capable of destroying per‐ and polyfluoroalkyl substances, but future research should reflect more realistic drinking water sources.more » « less
-
Abstract The escalating presence of per‐ and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM‐COF and MEL‐COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL‐ and MELEM‐COFs achieved 90.0–99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM‐COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g−1adsorption capacity—surpassing all reported COFs to date. MELEM‐COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF‐based adsorption strategies.more » « less
-
Deng, Yang; Huang, Qingguo; Chiang, Sheau-Yun Dora (Ed.)Per- and Polyfluoroalkyl Substances (PFAS) are an emerging class of persistent organic pollutants. Although their thermal/chemical stability and water/stain repellence enable their widespread use in various products, such as personal care products, food packaging and firefighting foams, these properties also make them particularly resistant to degradation. This unwelcome persistence, with their trace concentrations, environmental prevalence, bioaccumulation and probable toxicities, poses a potential threat to environmental and human health. As such, much work is directed to finding ways to efficiently abate PFAS in the environment. Per- and Polyfluoroalkyl Substance Treatment Technologies provides a thorough review of the current state of research in treatment technologies for removing PFAS from the environment, particularly water. Beginning with a brief introduction to PFAS challenges and research needs, it covers established and promising technologies for PFAS removal from drinking water, wastewater, and groundwater. This is a great book for environmental engineers, environmental chemists, and industrialists interested in pollution remediation.more » « less
-
Because of their ubiquitous presence in the environment and their potential toxicity to human health, per- and polyfluoroalkyl substances (PFAS) have drawn great attention over the past few years. Current conventional drinking and wastewater treatment approaches fail to effectively remove these substances from aqueous media, motivating researchers to focus on using sorption, a simple and cost-effective method, to remove PFAS from contaminated water. This work aims to summarize and critically evaluate the sorption capacities of PFAS by a variety of natural and engineered sorbents, including carbonaceous materials, ion exchange resins, polymers, different natural materials and other engineered sorbent materials. The specific focus of this review is on the performance of these different materials in removing short-chain PFAS due to their high solubility and mobility in aqueous media. A treatment train optimizing the removal of these short-chain substances from water is proposed, and challenges and future recommendations are discussed.more » « less
An official website of the United States government

