A collection of sets displays aproximity gapwith respect to some property if for every set in the collection, either (i) all members areδ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members areδ-close to the property. In particular, no set in the collection has roughly half of its membersδ-close to the property and the othersδ-far from it. We show that the collection of affine spaces displays a proximity gap with respect to Reed–Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to anyδsmaller than the Johnson/Guruswami–Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least)linearsize in the RS code dimension, forδsmaller than the unique decoding radius. Concretely, ifδis smaller than half the minimal distance of an RS code\(V\subset {\mathbb {F}}_q^n \), every affine space is either entirelyδ-close to the code, or alternatively at most an (n/q)-fraction of it isδ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems. We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed–Solomon codes (due to Berlekamp–Welch and Guruswami–Sudan) on aformal elementof an affine space. This involves working with Reed–Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests.
more »
« less
On the generalized Hamming weights of hyperbolic codes
[Formula: see text]A hyperbolic code is an evaluation code that improves a Reed–Muller code because the dimension increases while the minimum distance is not penalized. We give necessary and sufficient conditions, based on the basic parameters of the Reed–Muller code, to determine whether a Reed–Muller code coincides with a hyperbolic code. Given a hyperbolic code [Formula: see text], we find the largest Reed–Muller code contained in [Formula: see text] and the smallest Reed–Muller code containing [Formula: see text]. We then prove that similar to Reed–Muller and affine Cartesian codes, the [Formula: see text]th generalized Hamming weight and the [Formula: see text]th footprint of the hyperbolic code coincide. Unlike for Reed–Muller and affine Cartesian codes, determining the [Formula: see text]th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the [Formula: see text]th footprint of a hyperbolic code that, sometimes, are sharp.
more »
« less
- Award ID(s):
- 2201094
- PAR ID:
- 10523653
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Journal of Algebra and Its Applications
- Volume:
- 23
- Issue:
- 07
- ISSN:
- 0219-4988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithms. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and the encoding of a message polynomial is the collection of residues of that polynomial modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes as well as the less-studied Additive Folded Reed-Solomon codes, and lead to a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that a good bound on this distance leads to a capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are efficiently list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.more » « less
-
Abstract CSS-T codes were recently introduced as quantum error-correcting codes that respect a transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes$$(C_1, C_2)$$ such that$$C_1$$ contains$$C_2$$ ,$$C_2$$ is even, and the shortening of the dual of$$C_1$$ with respect to the support of each codeword of$$C_2$$ is self-dual. In this paper, we give new conditions to guarantee that a pair of binary codes$$(C_1, C_2)$$ is a CSS-T pair. We define the poset of CSS-T pairs and determine the minimal and maximal elements of the poset. We provide a propagation rule for nondegenerate CSS-T codes. We apply some main results to Reed–Muller, cyclic and extended cyclic codes. We characterize CSS-T pairs of cyclic codes in terms of the defining cyclotomic cosets. We find cyclic and extended cyclic codes to obtain quantum codes with better parameters than those in the literature.more » « less
-
In this paper, we present a linear-time decoding algorithm for expander codes based on irregular graphs of any positive vertex expansion factor [Formula: see text] and inner codes with a minimum distance of at least [Formula: see text], where [Formula: see text] is the maximum right degree. The algorithm corrects a constant fraction of errors. It builds on two thrusts. The first is a series of works starting with that of Sipser and Spielman [Expander codes, IEEE Trans. Inf. Theory 42(6) (1996) 1710–1722] demonstrating that an asymptotically good family of error-correcting codes that can be decoded in linear time even from a constant fraction of errors in a received word provided [Formula: see text] is at least [Formula: see text] and continuing to the results of Gao and Dowling [Fast decoding of expander codes, IEEE Trans. Inf. Theory 64(2) (2018) 972–978], which only require [Formula: see text] provided the inner code minimum distance is sufficiently large. The second is the improved performance of LDPC codes based on irregular graphs demonstrated by Luby et al. [Improved low- density parity-check codes using irregular graphs, IEEE Trans. Inf. Theory 47(2) (2001) 585–598] and Richardson et al. [Design of capacity- approaching irregular low-density parity-check codes, IEEE Trans. Inf. Theory 47(2) (2001) 619–637]. The algorithm presented in this paper allows for irregular or regular graph-based constructions and uses inner codes of appropriate lengths as checks rather than simple parity-checks.more » « less
-
null (Ed.)A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are δ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are δ-close to the property. In particular, no set in the collection has roughly half of its members δ-close to the property and the others δ-far from it. We show that the collection of affine spaces displays a proximity gap with respect to Reed-Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to any δ smaller than the Johnson/Guruswami-Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least) linear size in the RS code dimension, for δ smaller than the unique decoding radius. Concretely, if δ is smaller than half the minimal distance of an RS code V ⊂ Fq n , every affine space is either entirely δ-close to the code, or alternatively at most an ( n/q)-fraction of it is δ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems. We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed-Solomon codes (due to Berlekamp-Welch and Guruswami-Sudan) on a formal element of an affine space. This involves working with Reed-Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests.more » « less
An official website of the United States government

