The chemical composition of galaxies has been measured out to z∼4. However, nearly all studies beyond z∼0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galaxies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultradeep rest-frame optical spectra of five massive quiescent galaxies at z∼1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass–metallicity relation was already in place at z∼1.4. While the [Mg/Fe]−mass relation at z∼1.4 is consistent with the z<0.7 relation, [Fe/H] at z∼1.4 is ∼0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44+0.08 the most -0.07 massive galaxy may be more α-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low- mass, less α-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star formation timescales of 0.2–1.0 Gyr.
more »
« less
The Heavy Metal Survey: The Evolution of Stellar Metallicities, Abundance Ratios, and Ages of Massive Quiescent Galaxies since z ∼ 2
Abstract We present the elemental abundances and ages of 19 massive quiescent galaxies atz∼ 1.4 andz∼ 2.1 from the Keck Heavy Metal Survey. The ultradeep LRIS and MOSFIRE spectra were modeled using a full-spectrum stellar population fitting code with variable abundance patterns. The galaxies have iron abundances between [Fe/H] = −0.5 and −0.1 dex, with typical values of −0.2 [−0.3] atz∼ 1.4 [z∼ 2.1]. We also find a tentative –[Fe/H] relation atz∼ 1.4. The magnesium-to-iron ratios span [Mg/Fe] = 0.1–0.6 dex, with typical values of 0.3 [0.5] dex atz∼ 1.4 [z∼ 2.1]. The ages imply formation redshifts ofzform= 2–8. Compared to quiescent galaxies at lower redshifts, we find that [Fe/H] was ∼0.2 dex lower atz= 1.4–2.1. We find no evolution in [Mg/Fe] out toz∼ 1.4, though thez∼ 2.1 galaxies are 0.2 dex enhanced compared toz= 0–0.7. A comparison of these results to a chemical evolution model indicates that galaxies at higher redshift form at progressively earlier epochs and over shorter star formation timescales, with thez∼ 2.1 galaxies forming the bulk of their stars over 150 Myr atzform∼ 4. This evolution cannot be solely attributed to an increased number of quiescent galaxies at later times; several Heavy Metal galaxies have extreme chemical properties not found in massive galaxies atz∼ 0.0–0.7. Thus, the chemical properties of individual galaxies must evolve over time. Minor mergers also cannot fully account for this evolution as they cannot increase [Fe/H], particularly in galaxy centers. Consequently, the buildup of massive quiescent galaxies sincez∼ 2.1 may require further mechanisms, such as major mergers and/or central star formation.
more »
« less
- Award ID(s):
- 1908748
- PAR ID:
- 10523746
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 966
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 234
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Poststarburst galaxies (PSBs) are young quiescent galaxies that have recently experienced a rapid decrease in star formation, allowing us to probe the fast-quenching period of galaxy evolution. In this work, we obtained Hubble Space Telescope (HST)/WFC3 F110W imaging to measure the sizes of 171 massive ( spectroscopically identified PSBs at 1 <z1.3 selected from the DESI Survey Validation luminous red galaxy sample. This statistical sample constitutes an order of magnitude increase from the ∼20 PSBs with space-based imaging and deep spectroscopy. We perform structural fitting of the target galaxies withpysersicand compare them to quiescent and star-forming galaxies in the 3D-HST survey. We find that these PSBs are more compact than the general population of quiescent galaxies, lying systematically ∼0.1 dex below the established size–mass relation. However, their central surface mass densities are similar to those of their quiescent counterparts ( ). These findings are easily reconciled by later ex situ growth via minor mergers or a slight progenitor bias. These PSBs are round in projection (b/amedian∼ 0.8), suggesting that they are primarily spheroids, not disks, in 3D. We find no correlation between the time since quenching and light-weighted PSB sizes or central densities. This disfavors apparent structural growth due to the fading of centralized starbursts in this galaxy population. Instead, we posit that the fast quenching of massive galaxies at this epoch occurs preferentially in galaxies with preexisting compact structures.more » « less
-
Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from to , with a median of and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M⊙. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with (>3.7σ). For galaxies with , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings.more » « less
-
Abstract We present chemical abundances and velocities of five stars between 0.3 and 1.1 kpc from the center of the Tucana II ultrafaint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (−3.6 < [Fe/H] < −1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [α/Fe] at [Fe/H] ≈ −2.8, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = −1.29 ± 0.48 and [Mn/Fe] = −1.33 ± 0.33, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ( km s−1kpc−1), reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of M⊙. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in situ stellar halo formation, then other UFDs should show similar such features. Although not a unique explanation, the decline in [α/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts.more » « less
-
Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
An official website of the United States government

