Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the elemental abundances and ages of 19 massive quiescent galaxies atz∼ 1.4 andz∼ 2.1 from the Keck Heavy Metal Survey. The ultradeep LRIS and MOSFIRE spectra were modeled using a full-spectrum stellar population fitting code with variable abundance patterns. The galaxies have iron abundances between [Fe/H] = −0.5 and −0.1 dex, with typical values of −0.2 [−0.3] atz∼ 1.4 [z∼ 2.1]. We also find a tentative –[Fe/H] relation atz∼ 1.4. The magnesium-to-iron ratios span [Mg/Fe] = 0.1–0.6 dex, with typical values of 0.3 [0.5] dex atz∼ 1.4 [z∼ 2.1]. The ages imply formation redshifts ofzform= 2–8. Compared to quiescent galaxies at lower redshifts, we find that [Fe/H] was ∼0.2 dex lower atz= 1.4–2.1. We find no evolution in [Mg/Fe] out toz∼ 1.4, though thez∼ 2.1 galaxies are 0.2 dex enhanced compared toz= 0–0.7. A comparison of these results to a chemical evolution model indicates that galaxies at higher redshift form at progressively earlier epochs and over shorter star formation timescales, with thez∼ 2.1 galaxies forming the bulk of their stars over 150 Myr atzform∼ 4. This evolution cannot be solely attributed to an increased number of quiescent galaxies at later times; several Heavy Metal galaxies have extreme chemical properties not found in massive galaxies atz∼ 0.0–0.7. Thus, the chemical properties of individual galaxies must evolve over time. Minor mergers also cannot fully account for this evolution as they cannot increase [Fe/H], particularly in galaxy centers. Consequently, the buildup of massive quiescent galaxies sincez∼ 2.1 may require further mechanisms, such as major mergers and/or central star formation.more » « less
-
Abstract In this paper, we present the Heavy Metal Survey, which obtained ultradeep medium-resolution spectra of 21 massive quiescent galaxies at 1.3 <z< 2.3 with Keck/LRIS and MOSFIRE. With integration times of up to 16 hr per band per galaxy, we observe numerous Balmer and metal absorption lines in atmospheric windows. We successfully derive spectroscopic redshifts for all 21 galaxies, and for 19 we also measure stellar velocity dispersions (σv), ages, and elemental abundances, as detailed in an accompanying paper. Except for one emission-line active galactic nucleus, all galaxies are confirmed as quiescent through their faint or absent Hαemission and evolved stellar spectra. For most galaxies exhibiting faint Hα, elevated [Nii]/Hαsuggests a non-star-forming origin. We calculate dynamical masses (Mdyn) by combiningσvwith structural parameters obtained from the Hubble Space Telescope COSMOS(-DASH) survey and compare them with stellar masses (M*) derived using spectrophotometric modeling, considering various assumptions. For a fixed initial mass function (IMF), we observe a strong correlation betweenMdyn/M*andσv. This correlation may suggest that a varying IMF, with high-σvgalaxies being more bottom heavy, was already in place atz∼ 2. When implementing theσv-dependent IMF found in the cores of nearby early-type galaxiesandcorrecting for biases in our stellar mass and size measurements, we find a low scatter inMdyn/M*of 0.14 dex. However, these assumptions result in unphysical stellar masses, which exceed the dynamical masses by 34%. This tension suggests that distant quiescent galaxies do not simply grow inside-out into today’s massive early-type galaxies and the evolution is more complicated.more » « less
-
Abstract We present elemental abundance patterns (C, N, Mg, Si, Ca, Ti, V, Cr, Fe, Co, and Ni) for a population of 135 massive quiescent galaxies atz∼ 0.7 with ultra-deep rest-frame optical spectroscopy drawn from the LEGA-C survey. We derive average ages and elemental abundances in four bins of stellar velocity dispersion (σv) ranging from 150–250 km s−1using a full-spectrum hierarchical Bayesian model. The resulting elemental abundance measurements are precise to 0.05 dex. The majority of elements, as well as the total metallicity and stellar age, show a positive correlation withσv. Thus, the highest dispersion galaxies formed the earliest and are the most metal-rich. We find only mild or nonsignificant trends between [X/Fe] andσv, suggesting that the average star formation timescale does not strongly depend on velocity dispersion. To first order, the abundance patterns of thez∼ 0.7 quiescent galaxies are strikingly similar to those atz∼ 0. However, at the lowest-velocity dispersions, thez∼ 0.7 galaxies have slightly enhanced N, Mg, Ti, and Ni abundance ratios and earlier formation redshifts than theirz∼ 0 counterparts. Thus, while the higher-mass quiescent galaxy population shows little evolution, the low-mass quiescent galaxies population has grown significantly over the past 6 Gyr. Finally, the abundance patterns of bothz∼ 0 andz∼ 0.7 quiescent galaxies differ considerably from theoretical prediction based on a chemical evolution model, indicating that our understanding of the enrichment histories of these galaxies is still very limited.more » « less
-
The chemical composition of galaxies has been measured out to z∼4. However, nearly all studies beyond z∼0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galaxies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultradeep rest-frame optical spectra of five massive quiescent galaxies at z∼1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass–metallicity relation was already in place at z∼1.4. While the [Mg/Fe]−mass relation at z∼1.4 is consistent with the z<0.7 relation, [Fe/H] at z∼1.4 is ∼0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44+0.08 the most -0.07 massive galaxy may be more α-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low- mass, less α-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star formation timescales of 0.2–1.0 Gyr.more » « less
An official website of the United States government
