skip to main content


This content will become publicly available on February 1, 2025

Title: Core–Shell Rubber Nanoparticle-Modified CFRP/Steel Ambient-Cured Adhesive Joints: Curing Kinetics and Mechanical Behavior

Externally bonded wet-layup carbon fiber-reinforced polymer (CFRP) strengthening systems are extensively used in concrete structures but have not found widespread use in deficient steel structures. To address the challenges of the adhesive bonding of wet-layup CFRP to steel substrates, this study investigated the effect of core–shell rubber (CSR) nanoparticles on the curing kinetics, glass transition temperature (Tg) and mechanical properties of ambient-cured epoxy/CSR blends. The effects of silane coupling agent and CSR on the adhesive bond properties of CFRP/steel joints were also investigated. The results indicate that CSR nanoparticles have a mild catalytic effect on the curing kinetics of epoxy under ambient conditions. The effect of CSR on the Tg of epoxy was negligible. Epoxy adhesives modified with 5 to 20%wt. of CSR nanoparticles were characterized with improved ductility over brittle neat epoxy; however, the addition of CSR nanoparticles reduced tensile strength and modulus of the adhesives. An up to 250% increase in the single-lap shear strength of CFRP/steel joints was accomplished in CSR-modified joints over neat epoxy adhesive joints.

 
more » « less
Award ID(s):
2047736
PAR ID:
10523750
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
17
Issue:
3
ISSN:
1996-1944
Page Range / eLocation ID:
749
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The performance of bonded joints of carbon fiber reinforced polymer (CFRP) and steel relies on the mechanical properties of the adhesive used. Despite the high strength and modulus of epoxy adhesives, their brittleness limits their application to defect‐sensitive structures. The development of interpenetrating polymer networks (IPNs), either homogeneous or phase separated, provides a route to toughen the epoxy while maintaining its high strength and modulus. Microphase separated IPNs consisting of a diglycidyl ether of bisphenol A‐based epoxy resin and a thermoset with high toughness, polydicyclopentadiene (PDCPD), has been previously shown to demonstrate superior combinations of strength and toughness. This work investigates the most critical adhesive properties that affect bond strength by characterizing CFRP‐steel double‐lap shear joints containing the epoxy resin–PDCPD blend as the adhesive, using a wet lay‐up manufacturing technique. The epoxy resin–PDCPD blend adhesives realized much higher bond strengths compared to either neat epoxy or neat PDCPD. Correlations between the bond strength and the bulk material properties are presented. Theoretical calculation of the bond strength indicates that the higher bond strength that can be achieved by using the epoxy resin–PDCPD blend adhesive is due to the increased shear toughness of the new formulations. POLYM. ENG. SCI., 60:104–112, 2020. © 2019 Society of Plastics Engineers

     
    more » « less
  2. Previous studies have provided evidence that reinforcement of epoxy adhesives with nanostructures such as carbon nanofibers (CNFs) produces higher strength bonded joints between carbon fiber reinforced polymer (CFRP) laminates and shifts bond-line failure modes from the adhesive into the laminate. Despite this, there has been no research dedicated to applying reinforced adhesives to the bonding of nano-reinforced CFRP such as CNF z-threaded carbon fiber reinforced polymer (ZT-CFRP) laminates, which have been proven to exhibit increased interlaminar shear strength, mode-I delamination toughness, and compressive strength over traditional CFRP. This study examined the effectiveness of using CNF reinforced epoxy adhesives for unidirectional ZT-CFRP laminate bonding through single-lap shear tests using the ASTM D5868-01 standard. Unidirectional CFRP laminate samples bonded with both epoxy adhesive and CNF reinforced epoxy adhesive were also tested for comparison. It was found that the average shear strength observed for ZT-CFRP samples bonded with CNF reinforced epoxy adhesive was approximately 44% and 26 % higher than that of CFRP samples bonded with epoxy adhesive and CNF reinforced epoxy adhesive, respectively. Microscopic image analysis was performed to examine the mode of bond failure. The roles of nanomaterials in the fracture mechanism of the adhesives and the composite laminates are also discussed. 
    more » « less
  3. Well-dispersed and unaligned multi-walled carbon nanotubes (MCNTs) infused liquid epoxy adhesive have been reported for significantly improving the adhesive-joint of carbon fiber reinforced polymer (CFRP) composite laminates. However, it has not been determined in the literature if the alignment of MCNTs would provide an additional improvement than the randomly aligned case. In this study, various epoxy film adhesives embedded with 1wt% through-thickness aligned MCNTs, unaligned MCNTs, aligned carbon nanofibers (CNFs), and unaligned CNFs were used for bonding CFRP laminates. These variants have been used to bond two CFRP laminates for the ASTM D5868-01 single lap test as well as a steel variant for the same bonding process. The average shear strengths of the samples bonded by the various film adhesives were compared with the samples bonded by the pure epoxy-films. Microscopic analysis has been used to examine the fracture surface after testing. It was also used to visualize how the film adhesives fail while experiencing shear. This study has investigated the effectiveness of infusing through-thickness directionally aligned vs. unaligned nanoparticles in an epoxy film adhesive for bonding CFRP laminates and steel plate. It also indicates the potential future research direction of using nanoparticles in advanced adhesive technologies. 
    more » « less
  4. Lignin is a renewable feedstock that is abundant and inexpensive but still presents challenges for its valorization. In this work, we converted functionalized lignin into broad-spectrum adhesives using thiol–silyl ether crosslinkers. The curing behavior of adhesives was investigated via rheology of their resin forms. These materials exhibit good adhesion on diverse substrates, including wood, glass, steel, aluminium, carbon fiber, and different plastics, with the most adhesion strength in the range of 1–3 MPa. These adhesives were also explored for applications, ranging from wet conditions to different mechanically responsive materials. The mechanism of adhesion was further examined to understand the bonding process. 
    more » « less
  5. Abstract

    Carbon fiber reinforced polymer (CFRP) laminates are modified to enhance their suitability for various thermal applications. A synergistic approach utilizing the effect of various conductive and insulative modifiers with diglycidyl ethers of bisphenol A (DGEBA) epoxy resin and/carbon fiber (CF) is explored. In CFRP laminates developed after modifications made in epoxy resin using a thermoplastic material, such as polycarbonate (PC) and/or acrylonitrile butadiene styrene (ABS), exhibit high thermal resistance (TR) of 77.1% compared to unmodified CFRP. In contrast, modifications made using conductive mediums like phosphonium (P), imidazolium (I), or silanized‐graphene oxide (SGO) have lower TR of 25.7%, 30.5%, and 32.4%, respectively. A temperature gradient (TG) enhancement of 75% is reported for the 1.5 wt% PC/ABS modified CFRP laminates. On the contrary, modifications using 0.5 parts per hundred (phr)P, 0.5 phr I, and 1 g L−1SGO in epoxy reduce the TG by 25%, 30%, and 32%, respectively. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses are done to explore the thermal characteristics of each case of modification. Finally, scanning electron microscopy images confirm the distribution profile of the modifiers used. Based on the types of modifications performed, the current study can offer insightful information on the thermal performances of modified CFRP laminates.

     
    more » « less