Chemical redox reactions between redox shuttles and lithium-ion battery particles have applications in electrochemical systems including redox-mediated flow batteries, photo-assisted lithium-ion batteries, and lithium-ion battery overcharge protection. These previous studies, combined with interest in chemical redox of battery materials in general, has resulted in previous reports of the chemical oxidation and/or reduction of solid lithium-ion materials. However, in many of these reports, a single redox shuttle is the focus and/or the experimental conditions are relatively limited. Herein, a study of chemical redox for a series of redox shuttles reacted with a lithium-ion battery cathode material will be reported. Both oxidation and reduction of the solid material with redox shuttles as a function of time will be probed using ferrocene derivatives with different half-wave potentials. The progression of the chemical redox was tracked by using electrochemical analysis of the redox shuttles in a custom electrochemical cell, and rate constants for chemical redox were extracted from using two different models. This study provides evidence that redox shuttle-particle interactions play a role in the overall reaction rate, and more broadly support that this experimental method dependent on electrochemical analysis can be applied for comparison of redox shuttles reacting with solid electroactive materials.
more »
« less
Redox Hopping in Metal–Organic Frameworks through the Lens of the Scholz Model
Initially proposed by Lovric and Scholz to explain redox reactions in solid-phase voltammetry, the Scholz model’s applications have expanded to redox reactions in various materials. As an extension of the Cottrell equation, the Scholz model enabled the quantification of electron hopping and ion diffusion with coefficients, De and Di, respectively. Research utilizing the Scholz model indicated that, in most cases, a huge bottleneck results from the ion diffusion which is slower than electron hopping by orders of magnitude. Therefore, electron and ion motion can be tuned and optimized to increase the charge transport and conductivity through systematic investigations guided by the Scholz model. The strategy may be extended to other solid-state materials in the future, e.g., battery anodes/cathodes. In this Perspective, the applications of the Scholz model in different materials will be discussed. Moreover, the limitations of the Scholz model will also be introduced, and viable solutions to those limitations discussed.
more »
« less
- Award ID(s):
- 2109934
- PAR ID:
- 10523778
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 14
- Issue:
- 47
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 10700 to 10709
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Materials that undergo ion-insertion coupled electron transfer are important for energy storage, energy conversion, and optoelectronics applications. Cyclic voltammetry is a powerful technique to understand electrochemical kinetics. However, the interpretation of the kinetic behavior of ion insertion electrodes with analytical solutions developed for ion blocking electrodes has led to confusion about their rate-limiting behavior. The purpose of this manuscript is to demonstrate that the cyclic voltammetry response of thin film electrode materials undergoing solid-solution ion insertion without significant Ohmic polarization can be explained by well-established models for finite diffusion. To do this, we utilize an experimental and simulation approach to understand the kinetics of Li+insertion-coupled electron transfer into a thin film material (Nb2O5). We demonstrate general trends for the peak current vs scan rate behavior, with the latter parameter elevated to an exponent between limiting values of 1 and 0.5, depending on the solid-state diffusion characteristics of the film (diffusion coefficient, film thickness) and the experiment timescale (scan rate). We also show that values < 0.5 are possible depending on the cathodic potential limit. Our results will be useful to fundamentally understand and guide the selection and design of intercalation materials for multiple applications.more » « less
-
Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models. Importantly, by combining information from each of these scales, we are able to bridge the gap between bottom-up molecular characteristics and macroscopic properties such as apparent diffusion coefficients of electron transport (Dapp). We investigate the impact of different polymer backbones and of two critical factors during battery operation: state of charge and polymer swelling. Our findings reveal that the state of charge significantly influences solid-state packing and the thermophysical properties of the polymers, which, in turn, affect ionic and electronic transport. A combination of molecular-level properties (such as the reorganization energy) and condensed-phase properties (such as effective electron hopping distances) determine the predicted ranking of electron transport capabilities of the polymers. We predict Dapp for the phthalimide-based polymers and for a reference nitroxide radical-based polymer, finding a 3 orders of magnitude increase in Dapp (≈10–6 cm2 s–1) with respect to the reference. This study underscores the promise of phthalimide-containing polymers as highly capable redox-active polymers for anodic materials in all-organic batteries, due to their exceptional predicted electron transport capabilities.more » « less
-
Li-ion diffusion and lithiation kinetics in MnO/C nanocomposites were systematically investigated by monitoring the change in the charge transfer resistance and the ion diffusion coefficient, and the kinetically predominant process at various charge/discharge states. Crystal field analysis and density functional theory (DFT) calculations were introduced to reveal the relationship between the electronic structure of the phase compositions, the displayed electrochemical potential and its profile. The split 3d orbitals in the Mn ion determine the ordering of the electron migration and energy difference, leading to the different potential profiles in the lithiated/delithiated process. The phase compositions strongly affect the intrinsic properties of the MnO/C nanocomposites, increasing the ion diffusion coefficient from ∼10 −15 to 10 −11 cm 2 s −1 when the electrode progressed from the fully charged to fully discharged state, while both the surface redox reaction and the solid-state diffusion could be the limiting process depending on the lithiation/delithiation states. In addition, the MnO/C anode delivers an energy efficiency of 90% in a Li-ion hybrid capacitor, suggesting a promising and competitive application in the future.more » « less
-
Nanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode. Such redox-cycling reactions are facilitated by the nanostructure that increases the probabilities of both reactant–electrode and product–redox-capacitor encounters ( i.e. , the nanoconfinement effect), resulting in substantial signal amplification. Using redox-capacitor-tethered Au nanopillar electrodes, we demonstrate improved sensitivity for measuring pyocyanin (bacterial metabolite). This study paves a new way of using nanostructured materials in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials.more » « less
An official website of the United States government

