skip to main content


Title: Cilantro: Performance-Aware Resource Allocation for General Objectives via Online Feedback
Traditional systems for allocating finite cluster resources among competing jobs have either aimed at providing fairness, relied on users to specify their resource requirements, or have estimated these requirements via surrogate metrics (e.g. CPU utilization). These approaches do not account for a job’s real world performance (e.g. P95 latency). Existing performance-aware systems use offline profiled data and/or are designed for specific allocation objectives. In this work, we argue that resource allocation systems should directly account for real-world performance and the varied allocation objectives of users. In this pursuit, we build Cilantro. At the core of Cilantro is an online learning mechanism which forms feedback loops with the jobs to estimate the resource to performance mappings and load shifts. This relieves users from the onerous task of job profiling and collects reliable real-time feedback. This is then used to achieve a variety of user-specified scheduling objectives. Cilantro handles the uncertainty in the learned models by adapting the underlying policy to work with confidence bounds. We demonstrate this in two settings. First, in a multi-tenant 1000 CPU cluster with 20 independent jobs, three of Cilantro’s policies outperform 9 other baselines on three different performance-aware scheduling objectives, improving user utilities by up to 1.2 − 3.7x. Second, in a microservices setting, where 160 CPUs must be distributed between 19 inter-dependent microservices, Cilantro outperforms 3 other baselines, reducing the end-to-end P99 latency to x0.57 the next best baseline.  more » « less
Award ID(s):
1730628
PAR ID:
10523929
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
USENIX Association
Date Published:
ISBN:
978-1-939133-34-2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-throughput computing (HTC) workloads seek to complete as many jobs as possible over a long period of time. Such workloads require efficient execution of many parallel jobs and can occupy a large number of resources for a longtime. As a result, full utilization is the normal state of an HTC facility. The widespread use of container orchestrators eases the deployment of HTC frameworks across different platforms,which also provides an opportunity to scale up HTC workloads with almost infinite resources on the public cloud. However, the autoscaling mechanisms of container orchestrators are primarily designed to support latency-sensitive microservices, and result in unexpected behavior when presented with HTC workloads. In this paper, we design a feedback autoscaler, High Throughput Autoscaler (HTA), that leverages the unique characteristics ofthe HTC workload to autoscales the resource pools used by HTC workloads on container orchestrators. HTA takes into account a reference input, the real-time status of the jobs’ queue, as well as two feedback inputs, resource consumption of jobs, and the resource initialization time of the container orchestrator. We implement HTA using the Makeflow workload manager, WorkQueue job scheduler, and the Kubernetes cluster manager. We evaluate its performance on both CPU-bound and IO-bound workloads. The evaluation results show that, by using HTA, we improve resource utilization by 5.6×with a slight increase in execution time (about 15%) for a CPU-bound workload, and shorten the workload execution time by up to 3.65×for an IO-bound workload. 
    more » « less
  2. null (Ed.)
    In ROS (Robot Operating System), most applications in time- and safety-critical domain are constructed in the form of callback chains with data dependencies. Due to the shortcomings in its real-time support, ROS does not provide a strong timing guarantee and may lead to disastrous results. Although ROS2 claims to enhance the real-time capability, ensuring predictable end-to-end chain latency still remains a challenging problem. In this paper, we propose a new priority-driven chain-aware scheduler for the ROS2 framework and present end-to-end latency analysis for the proposed scheduler. With our scheduler, callbacks are prioritized based on the given timing requirements of the corresponding chains so that the end-to-end latency of critical chains can be improved with a predictable bound. The proposed scheduling design includes priority assignment and resource allocation considering all ROS2 scheduling-related abstractions, e.g., callbacks, nodes, and executors. To the best of our knowledge, this is the first work to address the inherent limitations of ROS2 in end-to-end latency by proposing a new scheduler design. We have implemented our scheduler in ROS2 running on NVIDIA Xavier NX. We have conducted case studies and schedulability experiments. The results show that the proposed scheduler yields a substantial improvement in end-to-end latency over the default ROS2 scheduler and the latest work in real-world scenarios. 
    more » « less
  3. null (Ed.)
    Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms these problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies. 
    more » « less
  4. Apache Mesos, a two-level resource scheduler, provides resource sharing across multiple users in a multi-tenant clustered environment. Computational resources (i.e., CPU, memory, disk, etc.) are distributed according to the Dominant Resource Fairness (DRF) policy. Mesos frameworks (users) receive resources based on their current usage and are responsible for scheduling their tasks within the allocation. We have observed that multiple frameworks can cause fairness imbalance in a multi-user environment. For example, a greedy framework consuming more than its fair share of resources can deny resource fairness to others. The user with the least Dominant Share is considered first by the DRF module to get its resource allocation. However, the default DRF implementation, in Apache Mesos' Master allocation module, does not consider the overall resource demands of the tasks in the queue for each user/framework. This lack of awareness can lead to poor performance as users without any pending task may receive more resource offers, and users with a queue of pending tasks can starve due to their high dominant shares. In a multi-tenant environment, the characteristics of frameworks and workloads must be understood by cluster managers to be able to define fairness based on not only resource share but also resource demand and queue wait time. We have developed a policy driven queue manager, Tromino, for an Apache Mesos cluster where tasks for individual frameworks can be scheduled based on each framework's overall resource demands and current resource consumption. Dominant Share and demand awareness of Tromino and scheduling based on these attributes can reduce (1) the impact of unfairness due to a framework specific configuration, and (2) unfair waiting time due to higher resource demand in a pending task queue. In the best case, Tromino can significantly reduce the average waiting time of a framework by using the proposed Demand-DRF aware policy. 
    more » « less
  5. Cloud computing has motivated renewed interest in resource allocation problems with new consumption models. A common goal is to share a resource, such as CPU or I/O bandwidth, among distinct users with different demand patterns as well as different quality of service requirements. To ensure these service requirements, cloud offerings often come with a service level agreement (SLA) between the provider and the users. A SLA specifies the amount of a resource a user is entitled to utilize. In many cloud settings, providers would like to operate resources at high utilization while simultaneously respecting individual SLAs. There is typically a trade-off between these two objectives; for example, utilization can be increased by shifting away resources from idle users to “scavenger” workload, but with the risk of the former then becoming active again. We study this fundamental tradeoff by formulating a resource allocation model that captures basic properties of cloud computing systems, including SLAs, highly limited feedback about the state of the system, and variable and unpredictable input sequences. Our main result is a simple and practical algorithm that achieves near-optimal performance on the above two objectives. First, we guarantee nearly optimal utilization of the resource even if compared with the omniscient offline dynamic optimum. Second, we simultaneously satisfy all individual SLAs up to a small error. The main algorithmic tool is a multiplicative weight update algorithm and a primal-dual argument to obtain its guarantees. We also provide numerical validation on real data to demonstrate the performance of our algorithm in practical applications. 
    more » « less