skip to main content


Title: Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads
Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms these problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies.  more » « less
Award ID(s):
1651570
PAR ID:
10213410
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
OSDI 2020
ISSN:
1942-1184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the wide adoption of deep neural network (DNN) models for various applications, enterprises, and cloud providers have built deep learning clusters and increasingly deployed specialized accelerators, such as GPUs and TPUs, for DNN training jobs. To arbitrate cluster resources among multi-user jobs, existing schedulers fall short, either lacking fine-grained heterogeneity awareness or hardly generalizable to various scheduling policies. To fill this gap, we propose a novel design of a task-level heterogeneity-aware scheduler, Hadar, based on an online optimization framework that can express other scheduling algorithms. Hadar leverages the performance traits of DNN jobs on a heterogeneous cluster, characterizes the task-level performance heterogeneity in the optimization problem, and makes scheduling decisions across both spatial and temporal dimensions. The primal-dual framework is employed, with our design of a dual subroutine, to solve the optimization problem and guide the scheduling design. Extensive trace-driven simulations with representative DNN models have been conducted to demonstrate that Hadar improves the average job completion time (JCT) by 3× over an Apache YARN-based resource manager used in production. Moreover, Hadar outperforms Gavel[1], the state-of-the-art heterogeneity-aware scheduler, by 2.5× for the average JCT, and shortens the queuing delay by 13% and improve FTF (Finish-Time-Fairness) by 1.5%. 
    more » « less
  2. Large-scale computing systems are increasingly using accelerators such as GPUs to enable peta- and exa-scale levels of compute to meet the needs of Machine Learning (ML) and scientific computing applications. Given the widespread and growing use of ML, including in some scientific applications, optimizing these clusters for ML workloads is particularly important. However, recent work has demonstrated that accelerators in these clusters can suffer from performance variability and this variability can lead to resource under-utilization and load imbalance. In this work we focus on how clusters schedulers, which are used to share accelerator-rich clusters across many concurrent ML jobs, can embrace performance variability to mitigate its effects. Our key insight to address this challenge is to characterize which applications are more likely to suffer from performance variability and take that into account while placing jobs on the cluster. We design a novel cluster scheduler, PAL, which uses performance variability measurements and application-specific profiles to improve job performance and resource utilization. PAL also balances performance variability with locality to ensure jobs are spread across as few nodes as possible. Overall, PAL significantly improves GPU-rich cluster scheduling: across traces for six ML workload applications spanning image, language, and vision models with a variety of variability profiles, PAL improves geomean job completion time by 42%, cluster utilization by 28%, and makespan by 47% over existing state-of-the-art schedulers. 
    more » « less
  3. Data movement latency when using on-chip accelerators in emerging heterogeneous architectures is a serious performance bottleneck. While hardware/software mechanisms such as peer-to-peer DMA between producer/consumer accelerators allow bypassing main memory and significantly reduce main memory contention, schedulers in both the hardware and software domains remain oblivious to their presence. Instead, most contemporary schedulers tend to be deadline-driven, with improved utilization and/or throughput serving as secondary or co-primary goals. This lack of focus on data communication will only worsen execution times as accelerator latencies reduce. In this paper, we present RELIEF (RElaxing Least-laxIty to Enable Forwarding), an online least laxity-driven accelerator scheduling policy that relieves memory pressure in accelerator-rich architectures via data movement-aware scheduling. RELIEF leverages laxity (time margin to a deadline) to opportunistically utilize available hardware data forwarding mechanisms while minimizing quality-of-service (QoS) degradation and unfairness. RELIEF achieves up to 50% more forwards compared to state-of- the-art policies, reducing main memory traffic and energy consumption by up to 32% and 18%, respectively. At the same time, RELIEF meets 14% more task deadlines on average and reduces worst-case deadline violation by 14%, highlighting QoS and fairness improvements. 
    more » « less
  4. The Sia1 scheduler efficiently assigns heterogeneous deep learning (DL) cluster resources to elastic resource-adaptive jobs. Although some recent schedulers address one aspect or another (e.g., heterogeneity or resource-adaptivity), none addresses all and most scale poorly to large clusters and/or heavy workloads even without the full complexity of the combined scheduling problem. Sia introduces a new scheduling formulation that can scale to the search-space sizes and intentionally match jobs and their configurations to GPU types and counts, while adapting to changes in cluster load and job mix over time. Sia also introduces a low- profiling-overhead approach to bootstrapping (for each new job) throughput models used to evaluate possible resource assignments, and it is the first cluster scheduler to support elastic scaling of hybrid parallel jobs. Extensive evaluations show that Sia outperforms state-of- the-art schedulers. For example, even on relatively small 44- to 64-GPU clusters with a mix of three GPU types, Sia reduces average job completion time ( JCT) by 30–93%, 99th percentile JCT and makespan by 28–95%, and GPU hours used by 12– 55% for workloads derived from 3 real-world environments. Additional experiments demonstrate that Sia scales to at least 2000-GPU clusters, provides improved fairness, and is not over-sensitive to scheduler parameter settings. 
    more » « less
  5. Traditional systems for allocating finite cluster resources among competing jobs have either aimed at providing fairness, relied on users to specify their resource requirements, or have estimated these requirements via surrogate metrics (e.g. CPU utilization). These approaches do not account for a job’s real world performance (e.g. P95 latency). Existing performance-aware systems use offline profiled data and/or are designed for specific allocation objectives. In this work, we argue that resource allocation systems should directly account for real-world performance and the varied allocation objectives of users. In this pursuit, we build Cilantro. At the core of Cilantro is an online learning mechanism which forms feedback loops with the jobs to estimate the resource to performance mappings and load shifts. This relieves users from the onerous task of job profiling and collects reliable real-time feedback. This is then used to achieve a variety of user-specified scheduling objectives. Cilantro handles the uncertainty in the learned models by adapting the underlying policy to work with confidence bounds. We demonstrate this in two settings. First, in a multi-tenant 1000 CPU cluster with 20 independent jobs, three of Cilantro’s policies outperform 9 other baselines on three different performance-aware scheduling objectives, improving user utilities by up to 1.2 − 3.7x. Second, in a microservices setting, where 160 CPUs must be distributed between 19 inter-dependent microservices, Cilantro outperforms 3 other baselines, reducing the end-to-end P99 latency to x0.57 the next best baseline. 
    more » « less