skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational comparison of paratropicity trends in antiaromatic s ‐indacene derivatives: Does the functional “make all the difference”?
Abstract A recent publication by Wu and co‐workers demonstrated that the workhorse functional B3LYP tends to overemphasize the delocalization in antiaromatic molecules, leading to poor agreement between the calculated proton NMR values and the experimentally obtained numbers. Rather, they showed that the M11 functional affords the best agreement between theory and experiment. We have computationally re‐examined our previously published NICS‐XY scan data using M11‐determined geometries and find that, aside from the placement ofs‐indacene, the antiaromaticity trends for both sets of data are essentially identical.  more » « less
Award ID(s):
2246964
PAR ID:
10523969
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Physical Organic Chemistry
Volume:
38
Issue:
2
ISSN:
0894-3230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Whether tetra‐tert‐butyl‐s‐indacene is a symmetricD2hstructure or a bond‐alternatingC2hstructure remains a standing puzzle. Close agreement between experimental and computed proton chemical shifts based on minima structures optimized at the M06‐2X, ωB97X‐D, and M11 levels confirm a bond‐localizedC2hsymmetry, which is consistent with the expected strong antiaromaticity of TtB‐s‐indacene. 
    more » « less
  2. Abstract The heterogeneity of brain imaging methods in neuroscience provides rich data that cannot be captured by a single technique, and our interpretations benefit from approaches that enable easy comparison both within and across different data types. For example, comparing brain-wide neural dynamics across experiments and aligning such data to anatomical resources, such as gene expression patterns or connectomes, requires precise alignment to a common set of anatomical coordinates. However, this is challenging because registeringin vivofunctional imaging data toex vivoreference atlases requires accommodating differences in imaging modality, microscope specification, and sample preparation. We overcome these challenges inDrosophilaby building anin vivoreference atlas from multiphoton-imaged brains, called the Functional Drosophila Atlas (FDA). We then develop a two-step pipeline, BrIdge For Registering Over Statistical Templates (BIFROST), for transforming neural imaging data into this common space and for importingex vivoresources such as connectomes. Using genetically labeled cell types as ground truth, we demonstrate registration with a precision of less than 10 microns. Overall, BIFROST provides a pipeline for registering functional imaging datasets in the fly, both within and across experiments. SignificanceLarge-scale functional imaging experiments inDrosophilahave given us new insights into neural activity in various sensory and behavioral contexts. However, precisely registering volumetric images from different studies has proven challenging, limiting quantitative comparisons of data across experiments. Here, we address this limitation by developing BIFROST, a registration pipeline robust to differences across experimental setups and datasets. We benchmark this pipeline by genetically labeling cell types in the fly brain and demonstrate sub-10 micron registration precision, both across specimens and across laboratories. We further demonstrate accurate registration betweenin-vivobrain volumes and ultrastructural connectomes, enabling direct structure-function comparisons in future experiments. 
    more » « less
  3. Wang, Luxin (Ed.)
    ABSTRACT Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens likeSalmonella entericaandListeria monocytogenes, potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detectionof S. enterica and L. monocytogenesby qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n= 1,990) was analyzed by multiplex qPCR specific forS. entericaandL. monocytogenes. For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection ofS. entericaandL. monocytogeneswere 68% and 67%, respectively. The NPV were 87% (S. enterica) and 85% (L. monocytogenes). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter forS. enterica; forL. monocytogenes, lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for bothS. entericaandL. monocytogenes, indicating that water type may influence the agreement of these results. IMPORTANCEDetecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence ofSalmonella entericaandListeria monocytogenesin irrigation water samples examined in this study. 
    more » « less
  4. Abstract Observations of shallow fault creep reveal increasingly complex time‐dependent slip histories that include quasi‐steady creep and triggered as well as spontaneous accelerated slip events. Here we report a recent slow slip event on the southern San Andreas fault triggered by the 2017Mw8.2 Chiapas (Mexico) earthquake that occurred 3,000 km away. Geodetic and geologic observations indicate that surface slip on the order of 10 mm occurred on a 40‐km‐long section of the southern San Andreas fault between the Mecca Hills and Bombay Beach, starting minutes after the Chiapas earthquake and continuing for more than a year. Both the magnitude and the depth extent of creep vary along strike. We derive a high‐resolution map of surface displacements by combining Sentinel‐1 Interferometric Synthetic Aperture Radar acquisitions from different lines of sight. Interferometric Synthetic Aperture Radar‐derived displacements are in good agreement with the creepmeter data and field mapping of surface offsets. Inversions of surface displacement data using dislocation models indicate that the highest amplitudes of surface slip are associated with shallow (<1 km) transient slip. We performed 2‐D simulations of shallow creep on a strike‐slip fault obeying rate‐and‐state friction to constrain frictional properties of the top few kilometers of the upper crust that can produce the observed behavior. 
    more » « less
  5. Abstract We combine data sets from the CGM2and CASBaH surveys to model a transition point,Rcross, between circumgalactic and intergalactic media (CGM and IGM, respectively). In total, our data consist of 7244 galaxies atz< 0.5 with precisely measured spectroscopic redshifts, all having impact parameters of 0.01–20 comoving Mpc from 28 QSO sightlines with high-resolution UV spectra that cover HiLyα. Our best-fitting model is a two-component model that combines a 3D absorber–galaxy cross-correlation function with a simple Gaussian profile at inner radii to represent the CGM. By design, this model gives rise to a determination ofRcrossas a function of galaxy stellar mass, which can be interpreted as the boundary between the CGM and IGM. For galaxies with 108≤M/M≤ 1010.5, we find thatRcross(M) ≈ 2.0 ± 0.6Rvir. Additionally, we find excellent agreement betweenRcross(M) and the theoretically determined splashback radius for galaxies in this mass range. Overall, our results favor models of galaxy evolution atz< 0.5 that distributeT≈ 104K gas to distances beyond the virial radius. 
    more » « less