skip to main content


Title: Controlling Surface of Rods With Entrained Particle as Asperities
Abstract

Changing the surface properties (i.e., roughness or friction) can be instrumental for many applications but can be a complex and resource-intensive process. In this paper, we demonstrate a novel process of controlling the friction of a continuous rod by delivering inorganic microparticles. A standardized continuous particle transfer protocol has been developed in our laboratory for depositing particles from a liquid carrier system (LCS) to the cylindrical rod substrate. The particle transfer process can produce controllable and tunable surface properties. Polymeric binder is used to deliver the particles as asperities over the rod substrate and by controlling their size, shape, and distribution, the coefficient of friction of the rod is determined. Tabletop experiments are designed and performed to measure the friction coefficient following the Capstan equation. The entrained particles on the substrate will create size- and shape-based asperities, which will alter the surface morphology toward the desired direction. Both oblique and direct quantitative measurements are performed at different particles and binder concentrations. A systematic variation in the friction coefficient is observed and reported in the result section. It is observed from the capstan experiment that adding only 1% irregular shaped particles in the suspension changes the friction coefficient of the rods by almost 115%. The proposed friction control technique is a simple scale-up, low-cost, low-waste, and low-energy manufacturing method for controlling the surface morphology.

 
more » « less
Award ID(s):
2101751
NSF-PAR ID:
10524113
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Micro- and Nano-Manufacturing
Volume:
11
Issue:
1
ISSN:
2166-0468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The mechanical response of a knot tied in elastic rods strongly depends on the frictional force due to rod–rod contact. The behavior of a knot can be qualitatively different based on the frictional coefficient of the elastic rod. Systematic variation of friction during rod–rod contact is a crucial component of any experimental design to uncover the underlying ingredients behind the mechanics of knots. In this paper, we demonstrate a novel process of controlling the friction of a continuous rod by adhering non-spherical inorganic micro-particles. Polymeric binder is used to deliver the particles as asperities over the rod substrate and by controlling their size and distribution the coefficient of friction of the rod is determined. In parallel, numerical simulations with the discrete elastic rods algorithm are used to reproduce the experimental observations. Tabletop experiments are performed where overhand knots with a variety of unknotting numbers are pulled tight. The force–extension curve of these experiments shows that the proposed process can successfully tune the friction between rods. 
    more » « less
  2. Abstract

    In this work, the physical phenomenon of the polydisperse micro-particle entrainment process from density mismatch mixture is investigated with the variation of substrate withdrawal speed. A liquid carrier system (LCS) is prepared by a polymer-based binder and an evaporating solvent. Nickel-based inorganic and spherical particles with a. moderate vol%. of 35% are added to the LCS solution. The cylindrical AISI 1006 mild steel wire substrate is dipped at different withdrawal speed ranging from 0.01 mms-1 to 20 mms-1. The binder vol%. is varied between 6.5% and 10.5%. Once the cylindrical substrate is extracted from the mixture, the surface coverage and the particle size are measured following the image analysis technique. The average particle size, coating thickness and the surface packing coverage by the particles are increasing with the higher withdrawal speed of the substrate. We observed relatively low size of particles (< 10 micrometers) as well as low surface coverage (∼33%) when the withdrawal speed remains at 0.01 mm/s. However, with high withdrawal speed (20 mm/s), we found all sizes of particles present on the substrate with a surface coverage of over 90%. The finding of this research will help to understand the high-volume solid transfer technique and develop a novel manufacturing process.

     
    more » « less
  3. Abstract

    In manufacturing industries, spherical micro-particles are commonly used as (e.g., brazing powder, metal filler, and 3D printing powder) which are produced with droplet-based particle fabrication techniques. Such processes create spherical morphology but introduce polydispersity and follow a continuous exponential pattern commonly expressed with Rosin-Rammler expression. Sorting those micro-particles in a narrower size range is an important but difficult, costly, and challenging process. Here we demonstrate the successful separation of the particles from a poly-disperse mixture with a particle volume fraction of 10% by dipping process. Nickel-based micro-particles (avg. dia. 5.69 μm) are added in a binder-based liquid carrier system. To encounter the gravitational force, external kinetic energy in the form of agitation is applied to ensure the uniform dispersion of the particles. The cylindrical substrate is prepared and dipped in the ‘pseudo suspension’ to separate the particles by adhering to it. The substrate is dried, and images are taken to characterize the separated particles using image J software. A clear size distribution can be observed which is also plotted. Additionally, a relationship between the process parameter and sorted particles has been established. The proposed method is quick, controllable, and easy to implement, which can be a useful tool for sorting wide-range poly-disperse particles.

     
    more » « less
  4. Abstract

    Granular hydrogels have emerged as a new class of injectable and porous biomaterials that improve integration with host tissue when compared to solid hydrogels. Granular hydrogels are typically prepared using spherical particles and this study considers whether particle shape (i.e., isotropic spheres vs anisotropic rods) influences granular hydrogel properties and cellular invasion. Simulations predict that anisotropic rods influence pore shape and interconnectivity, as well as bead transport through granular assemblies. Photo‐cross‐linkable norbornene‐modified hyaluronic acid is used to produce spherical and rod‐shaped particles using microfluidic droplet generators and formed into shear‐thinning and self‐healing granular hydrogels, with particle shape influencing mechanics and injectability. Rod‐shaped particles form granular hydrogels that have anisotropic and interconnected pores, with pore size and number influenced by particle shape and degree of packing. Robust in vitro sprouting of endothelial cells from embedded cellular spheroids is observed with rod‐shaped particles, including higher sprouting densities and sprout lengths when compared to hydrogels with spherical particles. Cell and vessel invasion into granular hydrogels when injected subcutaneously in vivo are significantly greater with rod‐shaped particles, whereas a gradient of cellularity is observed with spherical particles. Overall, this work demonstrates potentially superior functional properties of granular hydrogels with rod‐shaped particles for tissue repair.

     
    more » « less
  5. Abstract

    Micro-scale inorganic particles (d > 1 µm) have reduced surface area and higher density, making them negatively buoyant in most dip-coating mixtures. Their controlled delivery in hard-to-reach places through entrainment is possible but challenging due to the density mismatch between them and the liquid matrix called liquid carrier system (LCS). In this work, the particle transfer mechanism from the complex density mismatching mixture was investigated. The LCS solution was prepared and optimized using a polymer binder and an evaporating solvent. The inorganic particles were dispersed in the LCS by stirring at the just suspending speed to maintain the pseudo suspension characteristics for the heterogeneous mixture. The effect of solid loading and the binder volume fraction on solid transfer has been reported at room temperature. Two coating regimes are observed (i) heterogeneous coating where particle clusters are formed at a low capillary number and (ii) effective viscous regime, where full coverage can be observed on the substrate. ‘Zero’ particle entrainment was not observed even at a low capillary number of the mixture, which can be attributed to the presence of the binder and hydrodynamic flow of the particles due to the stirring of the mixture. The critical film thickness for particle entrainment is$${h}^{*}=0.16a$$h=0.16afor 6.5% binder and$${h}^{*}=0.26a$$h=0.26afor 10.5% binder, which are smaller than previously reported in literature. Furthermore, the transferred particle matrices closely follow the analytical expression (modified LLD) of density matching suspension which demonstrate that the density mismatch effect can be neutralized with the stirring energy. The findings of this research will help to understand this high-volume solid transfer technique and develop novel manufacturing processes.

     
    more » « less