Abstract In many black hole (BH) systems, the accretion disk is expected to be misaligned with respect to the BH spin axis. If the scale height of the disk is much smaller than the misalignment angle, the spin of the BH can tear the disk into multiple, independently precessing “sub-disks.” This is most likely to happen during outbursts in black hole X-Ray binaries (BHXRBs) and in active galactic nuclei (AGNs) accreting above a few percent of the Eddington limit, because the disk becomes razor-thin. Disk tearing has the potential to explain variability phenomena including quasi-periodic oscillations in BHXRBs and changing-look phenomena in AGNs. Here, we present the first radiative two-temperature general relativistic magnetohydrodynamic (GRMHD) simulation of a strongly tilted (65°) accretion disk around anMBH= 10M⊙BH, which tears and precesses. This leads to luminosity swings between a few percent and 50% of the Eddington limit on sub-viscous timescales. Surprisingly, even where the disk is radiation-pressure-dominated, the accretion disk is thermally stable overt≳ 14,000rg/c. This suggests warps play an important role in stabilizing the disk against thermal collapse. The disk forms two nozzle shocks perpendicular to the line of nodes where the scale height of the disk decreases tenfold and the electron temperature reachesTe∼ 108–109K. In addition, optically thin gas crossing the tear between the inner and outer disk gets heated toTe∼ 108K. This suggests that warped disks may emit a Comptonized spectrum that deviates substantially from idealized models. 
                        more » 
                        « less   
                    
                            
                            Formation of Magnetically Truncated Accretion Disks in 3D Radiation-transport Two-temperature GRMHD Simulations
                        
                    
    
            Abstract Multiwavelength observations suggest that the accretion disk in the hard and intermediate states of X-ray binaries (XRBs) and active galactic nucleus transitions from a cold, thin disk at large distances into a hot, thick flow close to the black hole (BH). However, the formation, structure, and dynamics of such truncated disks are poorly constrained due to the complexity of the thermodynamic, magnetic, and radiative processes involved. We present the first radiation-transport two-temperature general relativistic magnetohydrodynamic (GRMHD) simulations of truncated disks radiating at ∼35% of the Eddington luminosity with and without large-scale poloidal magnetic flux. We demonstrate that when a geometrically thin accretion disk is threaded by large-scale net poloidal magnetic flux, it self-consistently transitions at small radii into a two-phase medium of cold gas clumps floating through a hot, magnetically dominated corona. This transition occurs at a well-defined truncation radius determined by the distance out to which the disk is saturated with magnetic flux. The average ion and electron temperatures in the semiopaque corona reach, respectively,Ti≳ 1010K andTe≳ 5 × 108K. The system produces radiation, powerful collimated jets, and broader winds at the total energy efficiency exceeding 90%, the highest ever energy extraction efficiency from a spinning BH by a radiatively efficient flow in a GRMHD simulation. This is consistent with jetted ejections observed during XRB outbursts. The two-phase medium may naturally lead to broadened iron line emission observed in the hard state. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009884
- PAR ID:
- 10524147
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 935
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.more » « less
- 
            Abstract The presence of a strong, large-scale magnetic field in an accretion flow leads to the extraction of the rotational energy of the black hole (BH) through the Blandford–Znajek (BZ) process, believed to power relativistic jets in various astrophysical sources. We study rotational energy extraction from a BH surrounded by a highly magnetized thin disk by performing a set of 3D global GRMHD simulations. We find that the saturated flux threading the BH has a weaker dependence on BH spin, compared to highly magnetized hot (geometrically thick) accretion flows. Also, we find that only a fraction (10%–70%) of the extracted BZ power is channeled into the jet, depending on the spin parameter. The remaining energy is potentially used to launch winds or contribute to the radiative output of the disk or corona. Our simulations reveal that the presence of a strong magnetic field enhances the radiative efficiency of the disk, making it more luminous than its weakly magnetized counterpart or the standard disk model. We attribute this excess luminosity primarily to the enhanced magnetic dissipation in the intra-ISCO region. Our findings have implications for understanding X-ray corona formation and BH spin measurements, and interpreting BH transient phenomena.more » « less
- 
            ABSTRACT Accreting black holes (BHs) launch relativistic collimated jets, across many decades in luminosity and mass, suggesting the jet launching mechanism is universal, robust, and scale-free. Theoretical models and general relativistic magnetohydrodynamic (GRMHD) simulations indicate that the key jet-making ingredient is large-scale poloidal magnetic flux. However, its origin is uncertain, and it is unknown if it can be generated in situ or dragged inward from the ambient medium. Here, we use the GPU-accelerated GRMHD code h-amr to study global 3D BH accretion at unusually high resolutions more typical of local shearing box simulations. We demonstrate that turbulence in a radially extended accretion disc can generate large-scale poloidal magnetic flux in situ, even when starting from a purely toroidal magnetic field. The flux accumulates around the BH till it becomes dynamically important, leads to a magnetically arrested disc (MAD), and launches relativistic jets that are more powerful than the accretion flow. The jet power exceeds that of previous GRMHD toroidal field simulations by a factor of 10 000. The jets do not show significant kink or pinch instabilities, accelerate to γ ∼ 10 over three decades in distance, and follow a collimation profile similar to the observed M87 jet.more » « less
- 
            Abstract Data derived from general relativistic magnetohydrodynamic simulations of accretion onto black holes can be used as input to a postprocessing scheme that predicts the radiated spectrum. Combining a relativistic Compton scattering radiation transfer solution in the corona with detailed local atmosphere solutions incorporating local ionization and thermal balance within the disk photosphere, it is possible to study both spectral formation and intrinsic spectral variability in the radiation from relativistic accretion disks. With this method, we find that radiatively efficient systems with black holes of 10M⊙accreting at ≈0.01 in Eddington units produce spectra very similar to those observed in the hard states of X-ray binaries. The spectral shape above 10 keV is well described by a power law with an exponential cutoff. Intrinsic turbulent variations lead to order-unity changes in bolometric luminosity, variations in the logarithmic spectral slope ∼0.1, and factor of 2 alterations in the cutoff energy on timescales ∼50 (MBH/10M⊙) ms. Within the corona, the range of gas temperature spans more than 1 order of magnitude. The wide distribution of temperatures is central to defining the spectrum: the logarithmic spectral slope is harder by ∼0.3 and the cutoff energy larger by a factor ∼10–30 than if the coronal temperature everywhere were its mass-weighted mean.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    