Corlu, C G; Hunter, S R; Lam, H; Onggo, B S; Shortle, J; Biller, B
(Ed.)
Stochastic constraints, which constrain an expectation in the context of simulation optimization, can be hard to conceptualize and harder still to assess. As with a deterministic constraint, a solution is considered either feasible or infeasible with respect to a stochastic constraint. This perspective belies the subjective nature of stochastic constraints, which often arise when attempting to avoid alternative optimization formulations with multiple objectives or an aggregate objective with weights. Moreover, a solution’s feasibility with respect to a stochastic constraint cannot, in general, be ascertained based on only a finite number of simulation replications. We introduce different means of estimating how “close” the expected performance of a given solution is to being feasible with respect to one or more stochastic constraints. We explore how these metrics and their bootstrapped error estimates can be incorporated into plots showing a solver’s progress over time when solving a stochastically constrained problem.
more »
« less
An official website of the United States government

