Abstract We present a new feasible proximal gradient method for constrained optimization where both the objective and constraint functions are given by summation of a smooth, possibly nonconvex function and a convex simple function. The algorithm converts the original problem into a sequence of convex subproblems. Formulating those subproblems requires the evaluation of at most one gradient-value of the original objective and constraint functions. Either exact or approximate subproblems solutions can be computed efficiently in many cases. An important feature of the algorithm is the constraint level parameter. By carefully increasing this level for each subproblem, we provide a simple solution to overcome the challenge of bounding the Lagrangian multipliers and show that the algorithm follows a strictly feasible solution path till convergence to the stationary point. We develop a simple, proximal gradient descent type analysis, showing that the complexity bound of this new algorithm is comparable to gradient descent for the unconstrained setting which is new in the literature. Exploiting this new design and analysis technique, we extend our algorithms to some more challenging constrained optimization problems where (1) the objective is a stochastic or finite-sum function, and (2) structured nonsmooth functions replace smooth components of both objective and constraint functions. Complexity results for these problems also seem to be new in the literature. Finally, our method can also be applied to convex function constrained problems where we show complexities similar to the proximal gradient method.
more »
« less
Constraint Enforcement to Guarantee Strictly Feasible Solutions in a Surrogate Based Optimizer
Surrogate based optimization (SBO) methods have gained popularity in the field of constrained optimization of expensive black-box functions. However, constraint handling methods do not usually guarantee strictly feasible candidates during optimization. This can become an issue in applied engineering problems where design variables must remain feasible for simulations to not fail. We propose a simple constraint-handling method for computationally inexpensive constraint functions which guarantees strictly feasible candidates when using a surrogate-based optimizer. We compare our method to other SBO algorithms and an EA on five analytical test functions, and an applied fully-resolved Computational Fluid Dynamics (CFD) problem concerned with optimization of an undulatory swimming of a fish-like body, and show that the proposed algorithm shows favorable results while guaranteeing feasible candidates.
more »
« less
- Award ID(s):
- 1762827
- PAR ID:
- 10388147
- Publisher / Repository:
- AIAA SciTech Forum and Exposition
- Date Published:
- Journal Name:
- AIAA paper
- Volume:
- 2022
- ISSN:
- 0146-3705
- Page Range / eLocation ID:
- 1611
- Format(s):
- Medium: X
- Location:
- San Diego, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We introduce a class of first-order methods for smooth constrained optimization that are based on an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i) projections or optimizations over the entire feasible set are avoided, in stark contrast to projected gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible, which differs from active set or feasible direction methods, where the descent motion stops as soon as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in which the feasible set fails to have a simple structure. The key underlying idea is that constraints are expressed in terms of velocities instead of positions, which has the algorithmic consequence that optimizations over feasible sets at each iteration are replaced with optimizations over local, sparse convex approximations. The result is a simplified suite of algorithms and an expanded range of possible applications in machine learning.more » « less
-
Abstract When limit-state functions are highly nonlinear, traditional reliability methods, such as the first-order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on the other hand, is accurate if a sufficient sample size is used but is computationally intensive. This research proposes a new system reliability method that combines MCS and the Kriging method with improved accuracy and efficiency. Accurate surrogate models are created for limit-state functions with minimal variance in the estimate of the system reliability, thereby producing high accuracy for the system reliability prediction. Instead of employing global optimization, this method uses MCS samples from which training points for the surrogate models are selected. By considering the autocorrelation of a surrogate model, this method captures the more accurate contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated by four examples.more » « less
-
ABSTRACT Detailed radiative transfer simulations of kilonova spectra play an essential role in multimessenger astrophysics. Using the simulation results in parameter inference studies requires building a surrogate model from the simulation outputs to use in algorithms requiring sampling. In this work, we present kilonovanet, an implementation of conditional variational autoencoders (cVAEs) for the construction of surrogate models of kilonova spectra. This method can be trained on spectra directly, removing overhead time of pre-processing spectra, and greatly speeds up parameter inference time. We build surrogate models of three state-of-the-art kilonova simulation data sets and present in-depth surrogate error evaluation methods, which can in general be applied to any surrogate construction method. By creating synthetic photometric observations from the spectral surrogate, we perform parameter inference for the observed light-curve data of GW170817 and compare the results with previous analyses. Given the speed with which kilonovanet performs during parameter inference, it will serve as a useful tool in future gravitational wave observing runs to quickly analyse potential kilonova candidates.more » « less
-
In this work, we propose a trajectory generation method for robotic systems with contact force constraint based on optimal control and reachability analysis. Normally, the dynamics and constraints of the contact-constrained robot are nonlinear and coupled to each other. Instead of linearizing the model and constraints, we directly solve the optimal control problem to obtain the feasible state trajectory and the control input of the system. A tractable optimal control problem is formulated which is addressed by dual approaches, which are sampling-based dynamic programming and rigorous reachability analysis. The sampling-based method and Partially Observable Markov Decision Process (POMDP) are used to break down the end-to-end trajectory generation problem via sample-wise optimization in terms of given conditions. The result generates sequential pairs of subregions to be passed to reach the final goal. The reachability analysis ensures that we will find at least one trajectory starting from a given initial state and going through a sequence of subregions. The distinctive contributions of our method are to enable handling the intricate contact constraint coupled with system’s dynamics due to the reduction of computational complexity of the algorithm. We validate our method using extensive numerical simulations with a legged robot.more » « less
An official website of the United States government

