skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regional geographies and public health lessons of the COVID-19 pandemic in the Arctic
ObjectivesThis study examines the COVID-19 pandemic’s spatiotemporal dynamics in 52 sub-regions in eight Arctic states. This study further investigates the potential impact of early vaccination coverage on subsequent COVID-19 outcomes within these regions, potentially revealing public health insights of global significance. MethodsWe assessed the outcomes of the COVID-19 pandemic in Arctic sub-regions using three key epidemiological variables: confirmed cases, confirmed deaths, and case fatality ratio (CFR), along with vaccination rates to evaluate the effectiveness of the early vaccination campaign on the later dynamics of COVID-19 outcomes in these regions. ResultsFrom February 2020 to February 2023, the Arctic experienced five distinct waves of COVID-19 infections and fatalities. However, most Arctic regions consistently maintained Case Fatality Ratios (CFRs) below their respective national levels throughout these waves. Further, the regression analysis indicated that the impact of initial vaccination coverage on subsequent cumulative mortality rates and Case Fatality Ratio (CFR) was inverse and statistically significant. A common trend was the delayed onset of the pandemic in the Arctic due to its remoteness. A few regions, including Greenland, Iceland, the Faroe Islands, Northern Canada, Finland, and Norway, experienced isolated spikes in cases at the beginning of the pandemic with minimal or no fatalities. In contrast, Alaska, Northern Sweden, and Russia had generally high death rates, with surges in cases and fatalities. ConclusionAnalyzing COVID-19 data from 52 Arctic subregions shows significant spatial and temporal variations in the pandemic’s severity. Greenland, Iceland, the Faroe Islands, Northern Canada, Finland, and Norway exemplify successful pandemic management models characterized by low cases and deaths. These outcomes can be attributed to successful vaccination campaigns, and proactive public health initiatives along the delayed onset of the pandemic, which reduced the impact of COVID-19, given structural and population vulnerabilities. Thus, the Arctic experience of COVID-19 informs preparedness for future pandemic-like public health emergencies in remote regions and marginalized communities worldwide that share similar contexts.  more » « less
Award ID(s):
2034886
PAR ID:
10524226
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers in Public Health
Date Published:
Journal Name:
Frontiers in Public Health
Volume:
11
ISSN:
2296-2565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MacPherson, Peter (Ed.)
    BackgroundCoronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). Methods and findingsThe COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period.From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000–598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. ConclusionsCOVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year. 
    more » « less
  2. null (Ed.)
    The COVID-19 pandemic has caused more than 1,000,000 reported deaths globally, of which more than 200,000 have been reported in the United States as of October 1, 2020. Public health interventions have had significant impacts in reducing transmission and in averting even more deaths. Nonetheless, in many jurisdictions, the decline of cases and fatalities after apparent epidemic peaks has not been rapid. Instead, the asymmetric decline in cases appears, in most cases, to be consistent with plateau- or shoulder-like phenomena—a qualitative observation reinforced by a symmetry analysis of US state-level fatality data. Here we explore a model of fatality-driven awareness in which individual protective measures increase with death rates. In this model, fast increases to the peak are often followed by plateaus, shoulders, and lag-driven oscillations. The asymmetric shape of model-predicted incidence and fatality curves is consistent with observations from many jurisdictions. Yet, in contrast to model predictions, we find that population-level mobility metrics usually increased from low levels before fatalities reached an initial peak. We show that incorporating fatigue and long-term behavior change can reconcile the apparent premature relaxation of mobility reductions and help understand when post-peak dynamics are likely to lead to a resurgence of cases. 
    more » « less
  3. null (Ed.)
    Abstract Factors such as varied definitions of mortality, uncertainty in disease prevalence, and biased sampling complicate the quantification of fatality during an epidemic. Regardless of the employed fatality measure, the infected population and the number of infection-caused deaths need to be consistently estimated for comparing mortality across regions. We combine historical and current mortality data, a statistical testing model, and an SIR epidemic model, to improve estimation of mortality. We find that the average excess death across the entire US from January 2020 until February 2021 is 9 $$\%$$ % higher than the number of reported COVID-19 deaths. In some areas, such as New York City, the number of weekly deaths is about eight times higher than in previous years. Other countries such as Peru, Ecuador, Mexico, and Spain exhibit excess deaths significantly higher than their reported COVID-19 deaths. Conversely, we find statistically insignificant or even negative excess deaths for at least most of 2020 in places such as Germany, Denmark, and Norway. 
    more » « less
  4. Introduction: Coronavirus disease 2019 (COVID-19) has had a profound impact globally, causing the death of millions of people and deeply affecting socio-psychological, human health, and economic systems, with some nations bearing a disproportionate burden. Despite obesity having been established as one of the major risk factors of COVID-19 severity and other degenerative diseases, the effects that dietary pattern intake plays in COVID-19 outcomes remain poorly understood. The goal of this study is to look into the connection between eating habits, the number of non-obese and obese people, and COVID-19 outcomes in countries with populations exhibiting normal Body Mass Index (BMI), which is an indicator of obesity. Methods: The analysis includes data from 170 countries. From the 170 countries, we focused on 53 nations where the average, BMI falls within the normal range (18.5 to 24.9). A subset of 20 nations was selected for a more detailed examination, comprising 10 nations with the lowest BMI values within the normal range (18.5-19.8) and 10 nations with the highest BMI values within the normal range (23.5-24.9). We used Artificial Intelligence (AI) and Machine Learning (ML) applications to evaluate key metrics, including dietary patterns (sugar and vegetable intake), obesity prevalence, incidence rate, mortality rate, and Case Fatality Rate (CFR). Results: The results demonstrate a significant correlation between higher obesity prevalence and increased COVID-19 severity, evidenced by elevated incidence, mortality, and CFRs in countries like North Macedonia and Italy. In contrast, nations such as Iceland and New Zealand with well-established healthcare systems revealed low mortality rate and case fatality rate despite variations in dietary habits. The study also revealed that vegetable consumption appears to provide a slight to significant protective effects, suggesting that dietary patters alone do not consistently predict COVID-19 Outcomes. Conclusion: Data generated from this study showed the crucial role of healthcare infrastructure along with the testing capacity and data reporting in influencing the success of pandemic responses. It also highlights the need of integrating public health strategies, which focus on obesity management and improvement of healthcare preparedness. In addition, AI-driven predictive modeling offers valuable insights that may guide pandemic response efforts in the future, thereby enhancing global health crisis management and mitigating the impact of future health emergencies. Keywords: COVID-19; Dietary patterns; Obesity; Artificial intelligence; Machine learning; Public health; Health care systems 
    more » « less
  5. Revolutionising disease detection: The emergence of non-invasive VOC breathomicsBreathomics marks a revolutionary approach to disease detection by analyzing the chemical composition of exhaled breath. As the world recovers from the recent global health crises, the detection and management of pandemic diseases like COVID-19, RSV, and flu have come to the forefront. The COVID-19 pandemic alone has affected over 96 million people in the US, with a devastating count of more than a million fatalities. Similarly, respiratory syncytial virus (RSV) and influenza (flu) collectively burden the healthcare system with millions of cases annually, leading to hundreds of thousands of hospitalizations and tens of thousands of deaths. These staggering statistics underscore an urgent need for diagnostic methods that are not only swift and accurate but also non- invasive to facilitate rapid, widespread testing. Enter Breathomics—a revolutionary approach that analyzes the chemical composition of exhaled breath to detect diseases. 
    more » « less