- PAR ID:
- 10285539
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 51
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 32764 to 32771
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Factors such as varied definitions of mortality, uncertainty in disease prevalence, and biased sampling complicate the quantification of fatality during an epidemic. Regardless of the employed fatality measure, the infected population and the number of infection-caused deaths need to be consistently estimated for comparing mortality across regions. We combine historical and current mortality data, a statistical testing model, and an SIR epidemic model, to improve estimation of mortality. We find that the average excess death across the entire US from January 2020 until February 2021 is 9 $$\%$$ % higher than the number of reported COVID-19 deaths. In some areas, such as New York City, the number of weekly deaths is about eight times higher than in previous years. Other countries such as Peru, Ecuador, Mexico, and Spain exhibit excess deaths significantly higher than their reported COVID-19 deaths. Conversely, we find statistically insignificant or even negative excess deaths for at least most of 2020 in places such as Germany, Denmark, and Norway.more » « less
-
Abstract We apply tools from functional data analysis to model cumulative trajectories of COVID-19 cases across countries, establishing a framework for quantifying and comparing cases and deaths across countries longitudinally. It emerges that a country’s trajectory during an initial first month “priming period” largely determines how the situation unfolds subsequently. We also propose a method for forecasting case counts, which takes advantage of the common, latent information in the entire sample of curves, instead of just the history of a single country. Our framework facilitates to quantify the effects of demographic covariates and social mobility on doubling rates and case fatality rates through a time-varying regression model. Decreased workplace mobility is associated with lower doubling rates with a roughly 2 week delay, and case fatality rates exhibit a positive feedback pattern.
-
Objectives This study examines the COVID-19 pandemic’s spatiotemporal dynamics in 52 sub-regions in eight Arctic states. This study further investigates the potential impact of early vaccination coverage on subsequent COVID-19 outcomes within these regions, potentially revealing public health insights of global significance.
Methods We assessed the outcomes of the COVID-19 pandemic in Arctic sub-regions using three key epidemiological variables: confirmed cases, confirmed deaths, and case fatality ratio (CFR), along with vaccination rates to evaluate the effectiveness of the early vaccination campaign on the later dynamics of COVID-19 outcomes in these regions.
Results From February 2020 to February 2023, the Arctic experienced five distinct waves of COVID-19 infections and fatalities. However, most Arctic regions consistently maintained Case Fatality Ratios (CFRs) below their respective national levels throughout these waves. Further, the regression analysis indicated that the impact of initial vaccination coverage on subsequent cumulative mortality rates and Case Fatality Ratio (CFR) was inverse and statistically significant. A common trend was the delayed onset of the pandemic in the Arctic due to its remoteness. A few regions, including Greenland, Iceland, the Faroe Islands, Northern Canada, Finland, and Norway, experienced isolated spikes in cases at the beginning of the pandemic with minimal or no fatalities. In contrast, Alaska, Northern Sweden, and Russia had generally high death rates, with surges in cases and fatalities.
Conclusion Analyzing COVID-19 data from 52 Arctic subregions shows significant spatial and temporal variations in the pandemic’s severity. Greenland, Iceland, the Faroe Islands, Northern Canada, Finland, and Norway exemplify successful pandemic management models characterized by low cases and deaths. These outcomes can be attributed to successful vaccination campaigns, and proactive public health initiatives along the delayed onset of the pandemic, which reduced the impact of COVID-19, given structural and population vulnerabilities. Thus, the Arctic experience of COVID-19 informs preparedness for future pandemic-like public health emergencies in remote regions and marginalized communities worldwide that share similar contexts.
-
The spatial and temporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and COVID-19 deaths in the United States are poorly understood. We show that variations in the cumulative reported cases and deaths by county, state, and date exemplify Taylor’s law of fluctuation scaling. Specifically, on day 1 of each month from April 2020 through June 2021, each state’s variance (across its counties) of cases is nearly proportional to its squared mean of cases. COVID-19 deaths behave similarly. The lower 99% of counts of cases and deaths across all counties are approximately lognormally distributed. Unexpectedly, the largest 1% of counts are approximately Pareto distributed, with a tail index that implies a finite mean and an infinite variance. We explain why the counts across the entire distribution conform to Taylor’s law with exponent two using models and mathematics. The finding of infinite variance has practical consequences. Local jurisdictions (counties, states, and countries) that are planning for prevention and care of largely unvaccinated populations should anticipate the rare but extremely high counts of cases and deaths that occur in distributions with infinite variance. Jurisdictions should prepare collaborative responses across boundaries, because extremely high local counts of cases and deaths may vary beyond the resources of any local jurisdiction.more » « less
-
Abstract Drug overdose deaths continue to increase in the United States for all major drug categories. Over the past two decades the total number of overdose fatalities has increased more than fivefold; since 2013 the surge in overdose rates is primarily driven by fentanyl and methamphetamines. Different drug categories and factors such as age, gender, and ethnicity are associated with different overdose mortality characteristics that may also change in time. For example, the average age at death from a drug overdose has decreased from 1940 to 1990 while the overall mortality rate has steadily increased. To provide insight into the population-level dynamics of drug overdose mortality, we develop an age-structured model for drug addiction. Using an augmented ensemble Kalman filter (EnKF), we show through a simple example how our model can be combined with synthetic observation data to estimate mortality rate and an age-distribution parameter. Finally, we use an EnKF to combine our model with observation data on overdose fatalities in the United States from 1999 to 2020 to forecast the evolution of overdose trends and estimate model parameters.more » « less