Summary Plant secondary growth drives stem thickening and biomass accumulation, but its regulation is not yet fully understood.We have identified a novel semi‐dominant mutant,rbe‐d, characterized by a significant reduction in cambium cells and a complete absence of secondary growth in interfascicular regions in the stem. Gene cloning experiments indicated that the activation of the C2H2 zinc finger transcription factor, AT5G06070/RABBIT EARS (RBE), is responsible for therbe‐dphenotype.Transgenic analysis confirmed that overexpression of RBE represses secondary growth, while therbe‐2mutant increased the width of the interfascicular cambium‐derived (ICD) region. TheRBEgene is expressed in the procambium and cambium regions. Transcriptomic analysis showed that genes of the tracheary element differentiation inhibitory factor‐phloem intercalated with xylem (TDIF‐PXY) central regulatory pathway are repressed in therbe‐dmutant plants. Biochemical analyses confirmed that RBE binds directly to the promoter of WUSCHEL‐related homeobox (WOX4), a TDIF‐PXY downstreamWOXgene that regulates cambium cell proliferation. Moreover, genetic analysis confirmed thatWOX4is epistatic toRBEin secondary growth.Our results indicate that RBE inhibits cambium proliferation and thereby impacts secondary growth by directly repressingWOX4. These findings offer valuable new insight into the regulation of secondary growth in the Arabidopsis stem.
more »
« less
A transcriptional repressor HVA regulates vascular bundle formation through auxin transport in Arabidopsis stem
Summary Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem.We report a novel semi‐dominant mutant with high vascular activity,hva‐d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor,AT5G27880/HVA, is responsible for thehva‐dphenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA.HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene‐responsive element binding factor‐associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout ofHVAfunction with a CRISPR‐Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA‐VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitatorPIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number.This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.
more »
« less
- Award ID(s):
- 2049926
- PAR ID:
- 10524329
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 243
- Issue:
- 5
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 1681-1697
- Size(s):
- p. 1681-1697
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor,SHATTERING1(SH1), is a domestication gene regulating abscission in multiple cereals, including rice andSetaria. In rice,SH1inhibits lignification specifically in the AZ. However, the AZ ofSetariais nonlignified throughout, raising the question of howSH1functions in species without lignification.Crispr‐Cas9 knockout mutants ofSH1were generated inSetaria viridisand characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA‐Seq analysis.Thesh1mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed betweensh1and the wild‐type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin‐related genes differed between WT andsh1, with the signal of an antibody to auxin detected in thesh1chloroplast.SH1inSetariais required for activation of abscission through auxin signaling, which is not reported in other grass species.more » « less
-
Summary Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm‐specific TPX2‐like microtubule protein MAP20 in pit formation usingBrachypodium distachyonas a model system.Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20‐specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function ofMAP20.MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ‐tubulin ring complex in microtubule nucleation. Knockdown ofMAP20causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility.We conclude thatMAP20may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.more » « less
-
Summary Two types of tonoplast proton pumps, H+‐pyrophosphatase (V‐PPase) and the H+‐ATPase (V‐ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear.In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V‐PPase or V‐ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage.While the first division in wild‐type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution.Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin‐related developmental processes in Arabidopsis embryos and seedlings.more » « less
-
Summary The occurrence of conducting vascular tissue in the pith (CVTP) of tracheophytes is noteworthy. Medullary bundles, one of the remarkable examples of CVTP, evolved multiple times across angiosperms, notably in the Caryophyllales. Yet, information on the occurrence of medullary bundles is fragmented, hampering our understanding of their structure–function relationships, and evolutionary implications.Using three plastid molecular markers (matK,rbcL, andrps16 intron), a phylogeny is constructed for 561 species of Caryophyllales, and anatomical data are assembled for 856 species across 40 families to investigate the diversity of medullary bundles, their function, evolution, and diversification dynamics. Additionally, correlated evolution between medullary bundles and successive cambia was tested.Medullary bundles are ancestrally absent in Caryophyllales and evolved in core and noncore families. They are structurally diverse (e.g. number, arrangement, and types of bundles) and functionally active throughout the plant's lifespan, providing increased hydraulic conductivity, especially in herbaceous plants. Acquisition of medullary bundles does not explain diversification rate heterogeneity but is correlated to a higher diversification rate.Disparate developmental pathways were found leading to rampant convergent evolution of CVTP in Caryophyllales. These findings indicate the diversification of medullary bundles and vascular tissues as another central theme for functional and comparative molecular studies in Caryophyllales.more » « less
An official website of the United States government
