Abstract Volatile Organic Compounds (VOCs) are a diverse collection of molecules critical to cell metabolism, food web interactions, and atmospheric chemistry. The eukaryotic coccolithophoreGephyrocapsa huxleyi, an abundant coastal eukaryotic phytoplankter, forms massive blooms in coastal upwelling regions, which are often terminated by viruses (EhVs).G. huxleyiproduces organosulfur VOCs such as dimethyl sulfide (DMS) and halogenated metabolites that play key roles in atmospheric chemistry. Here we resolved the role of lytic viral infection by EhV207 on VOC production of the model strainG. huxleyiCCMP374. Our analysis identified 79 VOCs significantly impacted by viral infection, particularly during cell lysis, with sulfur containing VOCs like DMS dominating the profiles. Viral lysis results in a nearly six-fold increase in VOC production and generated a previously unrecognized range of VOCs, including 15 sulfur, 22 nitrogen, 2 phosphorus, 19 oxygen and 17 halogen-containing compounds. These findings reveal that viral infection ofG. huxleyireleases VOCs which are much more diverse than previously recognized. We further show that EhV207 primarily accelerates existing metabolic processes inG. huxleyiand facilitates the release of pre-existing intracellular VOCs rather than inducing novel biochemical pathways. This wide range of VOCs may be produced on a massive scale during coccolithophore bloom-and-bust cycles, with important impacts on coastal biogeochemistry and surface ocean/atmosphere interactions.
more »
« less
Volatile Organic Compound Metabolism on Early Earth
Abstract Biogenic volatile organic compounds (VOCs) constitute a significant portion of gas-phase metabolites in modern ecosystems and have unique roles in moderating atmospheric oxidative capacity, solar radiation balance, and aerosol formation. It has been theorized that VOCs may account for observed geological and evolutionary phenomena during the Archaean, but the direct contribution of biology to early non-methane VOC cycling remains unexplored. Here, we provide an assessment of all potential VOCs metabolized by the last universal common ancestor (LUCA). We identify enzyme functions linked to LUCA orthologous protein groups across eight literature sources and estimate the volatility of all associated substrates to identify ancient volatile metabolites. We hone in on volatile metabolites with confirmed modern emissions that exist in conserved metabolic pathways and produce a curated list of the most likely LUCA VOCs. We introduce volatile organic metabolites associated with early life and discuss their potential influence on early carbon cycling and atmospheric chemistry.
more »
« less
- Award ID(s):
- 2045332
- PAR ID:
- 10524330
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Molecular Evolution
- Volume:
- 92
- Issue:
- 5
- ISSN:
- 0022-2844
- Format(s):
- Medium: X Size: p. 605-617
- Size(s):
- p. 605-617
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ocean is a vast reservoir of bioavailable dissolved organic compounds (DOCs). Phytoplankton and bacterioplankton are the primary producers and consumers of these organic compounds, respectively, driving DOCs turnover on timescales of minutes to days. Volatile organic compounds (VOCs) make up about a third of DOCs, and their diffusivity and reactivity cause them to be important contributors to plankton carbon cycling and atmospheric chemistry. This research sought to describe plankton interactions mediated by VOCs. A model diatom, Phaeodactylum tricornutum, and five bacterial species known to be associated with the P. tricornutum phycosphere were studied in monocultures and co-cultures. Investigations evaluated the VOCs produced and consumed, temporal dynamics of VOC production and their roles in diatom metabolism, and physiological strategies of bacterial VOC consumers. P. tricornutum produced 78 VOCs during exponential growth. About 60% of these VOCs were hydrocarbons. In co-cultures with P. tricornutum, bacteria consumed different ranges of VOCs. The VOC specialists, Marinobacter and Roseibium, consumed the most, had hydrocarbon oxidation genes, and showed motility and physical attachment to the diatom. Rhodobacter and Stappia consumed fewer VOCs and were non-motile, while Yoonia consumed only acetaldehyde. Diatom gross carbon fixation was 29% higher in the presence of VOC specialists, suggesting rapid VOC consumption in the phycosphere impacts global gross carbon production. Temporal VOC production in P. tricornutum was monitored over a diel cycle. All VOCs were produced in higher concentrations during the day compared to night. Regression spline functions revealed six unique temporal production patterns associated with diel shifts in metabolism and the cell cycle. Physiological strategies for VOC uptake were studied in the VOC specialist Marinobacter. Marinobacter consumed some benzenoids at concentrations ranging from pM to μM and most increased cell densities compared to no VOC added controls and were not chemoattractants. Other VOCs that did not stimulate higher cell densities were strong chemoattractants. Thus, some VOCs are chemoattractants that guide motile cells toward co-emitted growth substrates. VOC discrimination may optimize spatial and temporal positioning in the phycosphere and enhance VOC uptake, sustaining the extremely low VOC concentrations in the surface ocean. This research revealed phytoplankton and ii bacterioplankton physiological processes that underlie the biological cycling of surface ocean VOCs and their potential for air-sea flux. This dissertation on microbiology in the phycosphere provided a foundation for exploring elements of science art that promote audience engagement through an exhibition that used scientific findings from the dissertation. Original art and audience surveys were used iteratively to increase science accessibility to general audiences.more » « less
-
Abstract Drought impacts on microbial activity can alter soil carbon fate and lead to the loss of stored carbon to the atmosphere as CO2and volatile organic compounds (VOCs). Here we examined drought impacts on carbon allocation by soil microbes in the Biosphere 2 artificial tropical rainforest by tracking13C from position-specific13C-pyruvate into CO2and VOCs in parallel with multi-omics. During drought, efflux of13C-enriched acetate, acetone and C4H6O2(diacetyl) increased. These changes represent increased production and buildup of intermediate metabolites driven by decreased carbon cycling efficiency. Simultaneously,13C-CO2efflux decreased, driven by a decrease in microbial activity. However, the microbial carbon allocation to energy gain relative to biosynthesis was unchanged, signifying maintained energy demand for biosynthesis of VOCs and other drought-stress-induced pathways. Overall, while carbon loss to the atmosphere via CO2decreased during drought, carbon loss via efflux of VOCs increased, indicating microbially induced shifts in soil carbon fate.more » « less
-
The decomposition of a body is inseparably associated with the release of several types of odors. This phenomenon has been used in the training of sniffer dogs for decades. The odor profile associated with decomposition consists of a range of volatile organic compounds (VOCs), chemical composition of which varies over time, temperature, environmental conditions, and the type of microorganisms, and insects colonizing the carcass. Mercaptans are responsible for the bad smell associated with corpses; however, there are no unified recommendations for conducting forensic analysis based on the detectable odor of revealed corpses and previous research on VOCs shows differing results. The aim of this review is to systematize the current knowledge on the type of volatile organic compounds related to the decomposition process, depending on a few variables. This knowledge will improve the methods of VOCs detection and analysis to be used in modern forensic diagnostics and improve the methods of training dogs for forensic applications.more » « less
-
Sanchez, Leandro F; Trottier, Cassandra (Ed.)For millennia, the medical field has utilized the sense of smell for qualitative assessment of health, but recent research shows we can tap into volatile organic compounds (VOCs), which create the odors that we perceive, for quantitative detection and analysis. In this paper, volatile organic compounds produced by the microbes in aged concrete, actively undergoing deterioration due to alkali-silica reaction were analyzed. Volatile organic compounds metabolites, an oft unused resource of chemical information that are produced by concrete-associated microbial communities, were used to detect, and characterize concrete deterioration. In this talk, preliminary results of volatile detection on long-term samples (e.g., ~ 7 years) will be provided. Scanning electron microscopy with energy disperse x-ray analysis was used to confirm deterioration mechanisms identified using volatilomics. Volatiles were analyzed using direct thermal extraction (DTE) and comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GC × GC–TOFMS). Identifying VOC biomarkers of concrete health will lay the groundwork for the development of sensors that can provide early deterioration warning, enabling more effective remediation/repair strategies. Microbes may also be sensitive to environmental stress (e.g., climate change), and a sensor based on microbial volatile organic compounds could be used to monitor infrastructure health and provide data to detect environmental stressors relevant to other fields.more » « less
An official website of the United States government
