skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drought re-routes soil microbial carbon metabolism towards emission of volatile metabolites in an artificial tropical rainforest
Abstract Drought impacts on microbial activity can alter soil carbon fate and lead to the loss of stored carbon to the atmosphere as CO2and volatile organic compounds (VOCs). Here we examined drought impacts on carbon allocation by soil microbes in the Biosphere 2 artificial tropical rainforest by tracking13C from position-specific13C-pyruvate into CO2and VOCs in parallel with multi-omics. During drought, efflux of13C-enriched acetate, acetone and C4H6O2(diacetyl) increased. These changes represent increased production and buildup of intermediate metabolites driven by decreased carbon cycling efficiency. Simultaneously,13C-CO2efflux decreased, driven by a decrease in microbial activity. However, the microbial carbon allocation to energy gain relative to biosynthesis was unchanged, signifying maintained energy demand for biosynthesis of VOCs and other drought-stress-induced pathways. Overall, while carbon loss to the atmosphere via CO2decreased during drought, carbon loss via efflux of VOCs increased, indicating microbially induced shifts in soil carbon fate.  more » « less
Award ID(s):
2045332
PAR ID:
10472346
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Microbiology
Volume:
8
Issue:
8
ISSN:
2058-5276
Page Range / eLocation ID:
1480 to 1494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is widely accepted that phosphorus (P) limits microbial metabolic processes and thus soil organic carbon (SOC) decomposition in tropical forests. Global change factors like elevated atmospheric nitrogen (N) deposition can enhance P limitation, raising concerns about the fate of SOC. However, how elevated N deposition affects the soil priming effect (PE) (i.e., fresh C inputs induced changes in SOC decomposition) in tropical forests remains unclear. We incubated soils exposed to 9 years of experimental N deposition in a subtropical evergreen broadleaved forest with two types of13C‐labeled substrates of contrasting bioavailability (glucose and cellulose) with and without P amendments. We found that N deposition decreased soil total P and microbial biomass P, suggesting enhanced P limitation. In P unamended soils, N deposition significantly inhibited the PE. In contrast, adding P significantly increased the PE under N deposition and by a larger extent for the PE of cellulose (PEcellu) than the PE of glucose (PEglu). Relative to adding glucose or cellulose solely, adding P with glucose alleviated the suppression of soil microbial biomass and C‐acquiring enzymes induced by N deposition, whereas adding P with cellulose attenuated the stimulation of acid phosphatase (AP) induced by N deposition. Across treatments, the PEgluincreased as C‐acquiring enzyme activity increased, whereas the PEcelluincreased as AP activity decreased. This suggests that P limitation, enhanced by N deposition, inhibits the soil PE through varying mechanisms depending on substrate bioavailability; that is, P limitation regulates the PEgluby affecting soil microbial growth and investment in C acquisition, whereas regulates the PEcelluby affecting microbial investment in P acquisition. These findings provide new insights for tropical forests impacted by N loading, suggesting that expected changes in C quality and P limitation can affect the long‐term regulation of the soil PE. 
    more » « less
  2. Abstract Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO2efflux by ~2–3 years, but the mechanisms underlying this shift differed. Warming accelerated decomposition of older carbon as increased CO2emissions depleted newer carbon. Drying suppressed decomposition of newer carbon inputs and decreased soil CO2emissions, thereby increasing contributions of older carbon to CO2efflux. These findings imply that both warming and drying, by accelerating the loss of older soil carbon or reducing the incorporation of fresh carbon inputs, will exacerbate soil carbon losses and negatively impact carbon storage in tropical forests under climate change. 
    more » « less
  3. Abstract Non‐growing season CO2emissions from Arctic tundra remain a major uncertainty in forecasting climate change consequences of permafrost thaw. We present the first time series of soil and microbial CO2emissions from a graminoid tundra based on year‐round in situ measurements of the radiocarbon content of soil CO214CO2) and of bulk soil C (Δ14C), microbial activity, and temperature. Combining these data with land‐atmosphere CO2exchange allows estimates of the proportion and mean age of microbial CO2emissions year‐round. We observe a seasonal shift in emission sources from fresh carbon during the growing season (August Δ14CO2 = 74 ± 4.7‰, 37% ± 3.4% microbial, mean ± se) to increasingly older soil carbon in fall and winter (March Δ14CO2 = 22 ± 1.3‰, 47% ± 8% microbial). Thus, rising soil temperatures and emissions during fall and winter are depleting aged soil carbon pools in the active layer and thawing permafrost and further accelerating climate change. 
    more » « less
  4. Abstract BackgroundWinter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). ResultsWe used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up18O in soil and respired CO2throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. ConclusionsOverall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. 
    more » « less
  5. Abstract High latitude wetlands are ecologically important ecosystems due to their large carbon (C) storage capacity and because they serve as breeding and nesting habitat for large populations of migratory birds. Goose herbivory in wetland meadows affects leaf chemical and morphological traits and also influences soil properties by increasing soil temperature and depositing faeces. Grazing‐induced changes to above‐ground traits and soil properties impact C cycling, but the influence of grazing on root‐mediated C and nitrogen (N) cycling has not been explored.We investigated how goose herbivory in a low‐Arctic coastal wetland in western Alaska affected root morphological, physiological and chemical traits of a dominant graminoid by assessing plant traits in ungrazed versus heavily grazed sedge meadows. We also performed a 11‐week lab‐based root incubation experiment to determine how grazing affects CO2‐C efflux, the size and decay rate of the fast‐cycling C pool (i.e. C with a mean residence time of days to weeks, determined via CO2‐C efflux), and patterns of N mineralization during root decomposition.Goose grazing altered root chemical traits by increasing root N by 7%, cellulose by 12%, and ash content by 17%, indicating that grazing shifted root chemical traits towards a resource‐acquisition strategy. Grazing did not alter root biomass, morphology or bulk C exudation. In our root incubation, soils that included the roots of grazed plants tended to exhibit greater CO2‐C efflux than those containing ungrazed plant roots due to a larger fast‐cycling C pool. Additionally, grazing‐induced increases in soil temperature led to greater CO2‐C efflux due to a faster decay rate of the fast‐cycling C pool. Finally, compared with ungrazed roots, we found that the decomposition of grazed roots resulted in more N being transferred to root necromass from the surrounding soil, suggesting that microbial communities decomposing grazed roots immobilized N.Synthesis. Overall, our results indicate that goose grazing increased C‐cycling rates by influencing soil environmental conditions and by altering the ecological strategy of grazed plants. In contrast, grazing decreased net N mineralization by promoting N immobilization. These results suggest that changing patterns and abundances of herbivores can have substantial effects on elemental cycles. 
    more » « less