skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting workers’ inattentiveness to struck-by hazards by monitoring biosignals during a construction task: A virtual reality experiment
Award ID(s):
2017019
PAR ID:
10524450
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Advanced Engineering Informatics
Volume:
49
Issue:
C
ISSN:
1474-0346
Page Range / eLocation ID:
101359
Subject(s) / Keyword(s):
Biosensing Behavior prediction Inattentive behaviors Virtual reality Construction safety
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Deoxydehydration (DODH) is the net reduction of diols and polyols to alkenes or dienes and water. Molybdenum cis -dioxo bis-phenolate ONO complexes were synthesized and have been shown to be active for DODH. Catalysts were screened for activity at 150–190 °C, and appreciable yields of up to 59% were obtained. PPh 3 , Na 2 SO 3 , Zn, C, 3-octanol and 2-propanol were screened as reductants. Additionally, the reactivities of a variety of diols were screened. With ( R , R )-(+)-hydrobenzoin as substrate, DODH occurs via a mechanism where reduction of the Mo catalyst is a result of diol oxidation to form two equivalents of aldehyde. These reactions result in complete conversion and near quantitative yields of trans-stilbene and benzaldehyde. 
    more » « less
  3. We investigate the modes of deformation of an initially spherical bubble immersed in a homogeneous and isotropic turbulent background flow. We perform direct numerical simulations of the two-phase incompressible Navier–Stokes equations, considering a low-density bubble in the high-density turbulent flow at various Weber numbers (the ratio of turbulent and surface tension forces) using the air–water density ratio. We discuss a theoretical framework for the bubble deformation in a turbulent flow using a spherical harmonic decomposition. We propose, for each mode of bubble deformation, a forcing term given by the statistics of velocity and pressure fluctuations, evaluated on a sphere of the same radius. This approach formally relates the bubble deformation and the background turbulent velocity fluctuations, in the limit of small deformations. The growth of the total surface deformation and of each individual mode is computed from the direct numerical simulations using an appropriate Voronoi decomposition of the bubble surface. We show that two successive temporal regimes occur: the first regime corresponds to deformations driven only by inertial forces, with the interface deformation growing linearly in time, in agreement with the model predictions, whereas the second regime results from a balance between inertial forces and surface tension. The transition time between the two regimes is given by the period of the first Rayleigh mode of bubble oscillation. We discuss how our approach can be used to relate the bubble lifetime to the turbulence statistics and eventually show that at high Weber numbers, bubble lifetime can be deduced from the statistics of turbulent fluctuations at the bubble scale. 
    more » « less
  4. null (Ed.)