skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenging Misconceptions about Race in Undergraduate Genetics
Racial biases, which harm marginalized and excluded communities, may be combatted by clarifying misconceptions about race during biology lessons. We developed a human genetics laboratory activity that challenges the misconception that race is biological (biological essentialism). We assessed the relationship between this activity and student outcomes using a survey of students’ attitudes about biological essentialism and color-evasive ideology and a concept inventory about phylogeny and human diversity. Students in the human genetics laboratory activity showed a significant decrease in their acceptance of biological essentialism compared with a control group, but did not show changes in color-evasive ideology. Students in both groups exhibited increased knowledge in both areas of the concept inventory, but the gains were larger in the human genetics laboratory. In the second iteration of this activity, we found that only white students’ decreases in biological essentialist beliefs were significant and the activity failed to decrease color-evasive ideologies for all students. Concept inventory gains were similar and significant for both white and non-white students in this iteration. Our findings underscore the effectiveness of addressing misconceptions about the biological origins of race and encourage more research on ways to effectively change damaging student attitudes about race in undergraduate genetics education.  more » « less
Award ID(s):
1751296
PAR ID:
10524503
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Eddy, Sarah L
Publisher / Repository:
The American Society for Cell Biology
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
23
Issue:
3
ISSN:
1931-7913
Subject(s) / Keyword(s):
Genetics education Culturally relevant pedagogy Preparation for future learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parks, Samantha T (Ed.)
    ABSTRACT The Microbiology Concept Inventory is an assessment tool derived from the fundamental statements created by the American Society for Microbiology. This two-tier, multiple-choice question inventory requires students to choose the most correct answer for each question and provide a brief justification of their reasoning. Educators can utilize this tool to identify common misconceptions held by students and adjust curriculum to address and prevent the persistence of student misconceptions. Over the course of 5 years, the Microbiology Concept Inventory was annually administered to undergraduate students enrolled in entry-level, mid-level, and senior capstone microbiology courses at a mid-western rural university. Analysis was completed to compare course, year, majors and minors, gender, ethnicity, and cumulative GPA. Results of this study showed a significant difference in Microbiology Concept Inventory scores between students with high cumulative GPAs (3.5–4.0) and students with comparatively lower cumulative GPAs (2.5–2.99, 3.0–3.49). Results between the other demographic categories revealed statistically different scores in favor of white students, but no differences in scores between genders. The results suggest evidence of ethnic bias, but no gender bias as measured by the Microbiology Concept Inventory. Additionally, significant differences in scores across cohorts are indicative of improvements in the curricula due to prior targeted changes. Analysis of concept inventory results can guide curriculum changes for course instructors. Implementation of curriculum changes can enrich students’ academic success. 
    more » « less
  2. ABSTRACT As a validated assessment, the Microbiology for Health Sciences Concept Inventory (MHSCI) is a valuable tool to evaluate student progress in health sciences microbiology courses. In this brief analysis, we survey MHSCI faculty users and report student MHSCI scores to determine the impact on student learning gains of the COVID-19 pandemic and subsequent quarantine in spring 2020. Although a majority of students reported moving to a fully online lecture and lab microbiology course in the spring 2020 semester, there was no statistically significant impact on student outcomes reported by the MHSCI, and by some measures, student learning gains increased in the semester students moved to online learning. Further research is necessary to determine the continuing impact of online lecture/lab courses on student outcomes on the MHSCI. Our analysis of data from spring 2020 shows that the MHSCI is still a statistically reliable measure of student misconceptions and overall difficulty scores for each item on the MHSCI was unchanged due to the pandemic. 
    more » « less
  3. Genetic essentialism of race is the belief that racial groups have different underlying genetic essences which cause them to differ physically, cognitively, or behaviorally. Apparently no published studies have explored if belief in genetic essentialism of race among adolescents differs after many weeks of formal instruction about different domains of genetics knowledge. Nor have any studies explored if such differences reflect a coherent change in students’ racial schemas. We use a quasi-experimental design (N = 254 students in 7th-12th grade) to explore these gaps. Over the course of three months, we compared students who learned from a curriculum on multifactorial inheritance and genetic ancestry to students who learned from their business as usual (BAU) genetics curriculum that discussed Mendelian and molecular genetics without any reference to race, multifactorial genetics, or genetic ancestry. Relative to the BAU condition, classrooms that learned from the multifactorial genetics and ancestry curriculum grew significantly more in their knowledge of multifactorial genetics and decreased significantly more in their genetic essentialist perceptions, attributions, and beliefs. From a conceptual change perspective, these findings suggest that classrooms using a curriculum emphasizing genetic complexity are more likely to shift toward a coherent anti-essentialist understanding of racial difference. 
    more » « less
  4. Against a backdrop of calls for increased access and participation in science, technology, engineering and mathematics, Hispanic-Serving Institutions (HSIs) in the United States have emerged as critical access points for Latina/o/x and other Students of Color. Federal grants can become important levers for building institutional capacity for broadening participation in STEM and transforming HSIs toward better serving Students of Color, specifically as it relates to curricula and pedagogy. In this study, we focus on the engineering faculty at an HSI who are participants in a National Science Foundation-funded, equity-focused professional development program. Operationalizing Bonilla-Silva’s color-evasive racial ideology framework, we use content analysis techniques to explore how engineering faculty discuss race and racism as part of the professional development experience. First, we find that engineering faculty largely rely on color-evasive racial frameworks (i.e., abstract liberalism, minimization of racism) when describing their motivations for participating in the program. Moreover, we find that engineering faculty responses depict a range of surprise and familiarity when reflecting on issues of race and racism. Finally, regardless of prior exposure to module concepts, at the end of the program, the majority of action projects reflect a recognition of race and racism as important. 
    more » « less
  5. Concept inventories are standardized assessments that evaluate student understanding of key concepts within academic disciplines. While prevalent across STEM fields, their development lags for advanced computer science topics like dynamic programming (DP)---an algorithmic technique that poses significant conceptual challenges for undergraduates. To fill this gap, we developed and validated a Dynamic Programming Concept Inventory (DPCI). We detail the iterative process used to formulate multiple-choice questions targeting known student misconceptions about DP concepts identified through prior research studies. We discuss key decisions, tradeoffs, and challenges faced in crafting probing questions to subtly reveal these conceptual misunderstandings. We conducted a preliminary psychometric validation by administering the DPCI to 172 undergraduate CS students finding our questions to be of appropriate difficulty and effectively discriminating between differing levels of student understanding. Taken together, our validated DPCI will enable instructors to accurately assess student mastery of DP. Moreover, our approach for devising a concept inventory for an advanced theoretical computer science concept can guide future efforts to create assessments for other under-evaluated areas currently lacking coverage. 
    more » « less