skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Impact of COVID-19 Curricular Shifts on Learning Gains on the Microbiology for Health Sciences Concept Inventory
ABSTRACT As a validated assessment, the Microbiology for Health Sciences Concept Inventory (MHSCI) is a valuable tool to evaluate student progress in health sciences microbiology courses. In this brief analysis, we survey MHSCI faculty users and report student MHSCI scores to determine the impact on student learning gains of the COVID-19 pandemic and subsequent quarantine in spring 2020. Although a majority of students reported moving to a fully online lecture and lab microbiology course in the spring 2020 semester, there was no statistically significant impact on student outcomes reported by the MHSCI, and by some measures, student learning gains increased in the semester students moved to online learning. Further research is necessary to determine the continuing impact of online lecture/lab courses on student outcomes on the MHSCI. Our analysis of data from spring 2020 shows that the MHSCI is still a statistically reliable measure of student misconceptions and overall difficulty scores for each item on the MHSCI was unchanged due to the pandemic.  more » « less
Award ID(s):
1711693
PAR ID:
10397152
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
Volume:
22
Issue:
1
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Test anxiety is a common experience shared by college students and is typically investigated in the context of traditional, face-to-face courses. However, the onset of the COVID-19 pandemic resulted in the closure of universities, and many students had to rapidly shift to and balance the challenges of online learning. We investigated how the shift to online learning during the pandemic impacted trait (habitual) and state (momentary) test anxiety and whether there was variation across different demographic groups already vulnerable to performance gaps in science, technology, engineering, and mathematics (STEM) courses. Quantitative analyses revealed that trait and state test anxiety were lower in Spring 2020 (COVID semester) than in Spring 2019 and were higher overall in women than men. We did not find a difference in either trait or state anxiety in first-generation students or among persons excluded because of ethnicity or race. Qualitative analyses revealed that student priorities shifted away from coursework during Spring 2020. While students initially perceived the shift to online learning as beneficial, 1 month after the shift, students reported more difficulties studying and completing their coursework. Taken together, these results are the first to compare reports of test anxiety during a traditional, undisrupted semester to the semester where COVID-19 forced a sudden transition online. 
    more » « less
  2. The COVID-19 outbreak has had a significant impact on higher education worldwide. In-person courses had to be quickly transited to online, including lab courses embedded with Course-based Undergraduate Research Experiences (CUREs). In response to this challenge, we successfully converted a fully in-person biochemistry lab that integrated with a 6-week modular CURE (mCURE) into a hybrid CURE (hCURE) in Fall 2020, with support from the Malate dehydrogenase CUREs Community. The hCURE was structured to have in-person labs and online activities arranged on an alternating weekly basis, so that only half of the regular class size of students attended the hands-on labs at any given time to maintain proper social distancing. To evaluate the efficacy of the hCURE, student science self-efficacy and conceptual understanding of protein structure–function relationships were measured using pre-course and post-course surveys and tests, respectively. Our data showed a significant increase in student science self-efficacy and conceptual knowledge test scores. Furthermore, we compared the pre-lab quiz scores that assessed various biochemical concepts and skills across three different semesters, Fall 2019 with a fully in-person mCURE before the pandemic, Fall 2020 with the hCURE implemented during the pandemic, and Fall 2021 when the lab returned to the fully in-person mCURE following the pandemic. A significant decline in quiz scores from Fall 2019 to Fall 2020, and an even further decline from Fall 2019 to Fall 2021 were observed, suggesting that apart from the impact of course modality, the pandemic may have exerted a lasting adverse effect on student learning. 
    more » « less
  3. Miller, Eva (Ed.)
    COVID-19 is a continuing global pandemic causing significant changes and modifications in the ways we teach and learn here in the U.S as well as around the world. Most universities, faculty members, and students modified their learning system by incorporating significant online or mixed learning methods/modes to reduce in person contact time and to reduce the spread of the virus. Universities, faculty and students were challenged as they adapted to new learning modules, strategies and approaches. This adaption started in the Spring of 2020 and has continued to date through the Spring of 2022. The main objective of this project was to investigate faculty perception of STEM student experiences and behavior during the Fall 2020 semester as compared to the Spring 2020 semester as COVID-19 impacts were prolonged. Through a qualitative methodology of zoom interviews administered to 32 STEM faculty members across six U.S. Universities nationwide and a theming scheme, the opinion and narratives of these faculty members were garnered in a round one and round two sets of interviews, in Summer 2020 and then in Spring 2021 (following the semesters of interest). Some of the main new themes that were detected in faculty interviews during the Fall 2020 semester and which reflect faculty perceptions are represented as follow: COVID-19 impact on student and faculty motivation, COVID-19 impacts on labs and experiential learning, COVID-19 impact on mental health, COVID-19 impact on STEM students' involvement in STEM experiential learning opportunities and research. Other previous themes detected and which are revisited to analyze major differences with those themes obtained during the Spring 2020 are presented and not limited to: extra efforts from professors, student cheating behavior, cheating factors and prevention, student behavioral and performance changes, student struggles and challenges, University response and efforts to the COVID-19 pandemic. We explored the differences in these themes between the semesters to look at noticed adaptations and modifications. Presented will also be recommendations to improve student and faculty motivation along with strategies to enhance the student learning experience during the COVID-19 pandemic. We report on common findings and suggest future strategies. 
    more » « less
  4. Online modes of teaching and learning have gained increased attention following the COVID-19 pandemic, resulting in education delivery trends likely to continue for the foreseeable future. It is therefore critical to understand the implications for student learning outcomes and their interest in or affinity towards the subject, particularly in water science classes, where educators have traditionally employed hands-on outdoor activities that are difficult to replicate online. In this study, we share our experiences adapting a field-based laboratory activity on groundwater to accommodate more than 700 students in our largest-enrollment general education course during the pandemic. As part of our adaptation strategy, we offered two versions of the same exercise, one in-person at the Mirror Lake Water Science Learning Laboratory, located on Ohio State University’s main campus, and one online. Although outdoor lab facilities have been used by universities since at least the 1970s, this research is novel in that 1) it considers not only student achievement but also affinity for the subject, 2) it is the first of its kind on The Ohio State University’s main campus, and 3) it was conducted during the COVID-19 pandemic, at a time when most university classes were unable to take traditional field trips. We used laboratory grades and a survey to assess differences in student learning and affinity outcomes for in-person and online exercises. Students who completed the in-person exercise earned better scores than their online peers. For example, in Fall 2021, the median lab score for the in-person group was 97.8%, compared to 91.7% for the online group. The in-person group also reported a significant ( p < 0.05) increase in how much they enjoyed learning about water, while online students reported a significant decrease. Online students also reported a significant decrease in how likely they would be to take another class in water or earth sciences. It is unclear whether the in-person exercise had better learning and affinity outcomes because of the hands-on, outdoor qualities of the lab or because the format allowed greater interaction among peers and teaching instructors (TAs). To mitigate disparities in student learning outcomes between the online and in-person course delivery, instructors will implement future changes to the online version of the lab to enhance interactions among students and TAs. 
    more » « less
  5. null (Ed.)
    ABSTRACT Calls for early exposure of all undergraduates to research have led to the increased use and study of course-based research experiences (CREs). CREs have been shown to increase measures of persistence in the sciences, such as science identity, scientific self-efficacy, project ownership, scientific community values, and networking. However, implementing CREs can be challenging and resource-intensive. These barriers may be partly mitigated by the use of short-term CRE modules rather than semester- or year-long projects. One study has shown that a CRE module captures some of the known benefits of CREs as measured by the Persistence in the Sciences (PITS) survey. Here, we used this same survey to assess outcomes for introductory biology students who completed a semester of modular CREs based on faculty research at an R1 university. The results indicated levels of self-efficacy, science community values, and science identity similar to those previously reported for students in the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) full-semester CRE. Scores for project ownership (content) were between previously reported traditional lab and CRE scores, while project ownership (emotion) and networking were similar to those of traditional labs. Our results suggest that modular CREs can lead to significant gains in student affect measures that have been linked to persistence in the sciences in other studies. Although gains were not as great in all measures as with a semester-long CRE, implementation of modular CREs may be more feasible and offers the added benefits of exposing students to diverse research fields and lab techniques. 
    more » « less