Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.
more »
« less
A Geochemical Mechanism for >10 m Apparent Downward Offsets of Magnetic Reversals Inferred From Comparison of Two Scotia Sea Drill Sites
Abstract We document an apparent downward displacement of the Matuyama‐Brunhes magnetic reversal by ∼20 m at Scotia Sea International Ocean Discovery Program Site U1538 (Pirie Basin) by comparison with the well‐defined paleomagnetic record at nearby Site U1537 (Dove Basin). Detailed stratigraphic correlation between the two sites is possible due to similar lithologic variations. However, the two sites have distinctly different porewater geochemistry. Notably, Site U1538 indicates a greater demand for electron acceptors to oxidize organic carbon and Fe2+enrichment below the depth of SO42−depletion. Magnetic parameters indicate enrichment of an authigenic magnetic mineral with strong remanence properties around the depth of SO42−depletion (∼46 m at Site U1538) relative to magnetic parameters at correlative depths at Site U1537. Fe2+enrichment below the depth of SO42−depletion is not predicted based on the energetically favorable order of electron acceptors for microbial respiration but is documented here and in other depositional settings. This indicates Fe2+production exceeds the production of H2S by SO42−reduction, providing a geochemical environment that favors the production and preservation of ferrimagnetic remanence‐bearing iron sulfides over paramagnetic pyrite and, thus, a mechanism for deep chemical remanent magnetization acquisition at depths of tens of meters. The influence of authigenic ferrimagnetic iron sulfides on paleomagnetic signals can be difficult to demonstrate with magnetic properties alone; therefore, this finding has implications for evaluating the fidelity of magnetostratigraphic records with complementary geochemical data. Such situations should be considered in other depositional environments with similar porewater Fe2+accumulation below the SO42−reduction depth.
more »
« less
- PAR ID:
- 10524612
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use geochemical and petrographic data from anoxic sequences of the Nicobar Fan to document extensive marine silicate weathering (MSiW) in the input sediment of the Sumatra subduction zone and the conditions that result in authigenic minerals originating from this reaction: precipitation of authigenic carbonate—which sequesters carbon—and formation of authigenic clay—which releases CO2. Increase in87Sr/86Sr in pore fluids from International Ocean Discovery Program Expedition 362 (Site U1480 to 0.71376 and Site U1481 to 0.71296) reveals a radiogenic strontium contribution from alteration of the Himalayan continental sediment that dominates the Nicobar Fan. Peaks in the dissolved strontium isotope data coincide with zones of methane presence, consistent with MSiW reactions driven by CO2generation during methanogenesis. Later‐stage fan sequences from 24 to 400 mbsf (meters below seafloor) contain only minor carbonate with87Sr/86Sr ratios that deviate only slightly from the co‐eval seawater values (0.70920–0.70930); geochemical data in this zone point to a contribution of authigenic clay formation. In contrast, microscopy and elemental mapping of the carbonate‐cemented zones in the earliest fan deposits (>780 mbsf) show replacement of feldspars and dense minerals by carbonate, which ranges in volume from a few percent of the grain to near total grain obliteration. This deeper authigenic carbonate is significantly enriched in radiogenic87Sr (0.71136–0.71328). Thus, MSiW leads to distinct products, likely in response to a weathering‐derived supply of silica in the younger setting versus calcium enrichment via diffusion from oceanic basement in the older sequence.more » « less
-
Guaymas Basin is a young marginal rift basin in the Gulf of California, Mexico, characterized by active seafloor spreading and rapid sediment deposition, including organic-rich sediments. International Ocean Discovery Program (IODP) Expedition 385 drilled two sites near the Sonora margin, Sites U1549 and U1552, that are both close to a gas upflow pipe with Site U1549 being more distal to the corresponding upflow zone than Site U1552. Attenuated cold seepage conditions exist at Site U1549 in the central basin with methane occurrence below 25 meters below seafloor (mbsf), and hydrate was found to be present from ~25 mbsf at Site U1552. These two sites, ~12 km apart, represent an opportunity to study the influence of gas hydrate occurrence and methane seepage in shallow young organic-rich sediments (<170 mbsf; <0.29 Ma). In this data report, we present rock magnetic and geochemical data obtained from Sites U1549 and U1552 to characterize aqueous, solid iron, and sulfur phases present in the sediments, with a focus on iron oxides and iron sulfides. Guaymas Basin sediments are rich in reactive iron, mainly as pyrite. Iron oxides (magnetite and hematite) and authigenic iron sulfides (pyrite and greigite) are ubiquitously found in the sediments, and iron oxides are reduced to form pyrite. Pore water analysis seems to characterize current environmental and diagenetic processes, especially those related to fluid and gas circulation. Differences in methane seepage and hydrate occurrence could be due to spatial variations in methane fluid flow and pathways, leading to dynamic conditions at these sites with an impact on the sulfate reduction and anaerobic oxidation of methane rates. Authigenic magnetic mineralogy, mostly sensitive to biogeochemical processes at the sulfate–methane transition zone, would respond to fluid and gas flow variations, especially of methane.more » « less
-
Abstract Natural materials contain small grains of magnetic iron oxides that can record information about the magnetic field of the Earth when they form and can be used to document changes in the geomagnetic field through time. Thermoremanent magnetization is the most stable type of remanent magnetization in igneous rocks and can be carried by particle sizes above the upper size limit for single‐domain behavior. To better understand thermoremanent magnetization in particles larger than single domain, we imaged the thermal dependence of magnetic structures in ~1.5‐μm grains of titanomagnetite (Fe2.46Ti0.54O4) using variable‐temperature magnetic force microscopy. At room temperature, grains displayed single‐vortex and multivortex states. Upon heating, the single‐vortex state was found to be stable up to the Curie temperature (~215 °C), whereas multivortex states unblocked between 125 and 200 °C by transitioning into single‐vortex states. During cooling in a weak field (~0.1 mT), single‐vortex states nucleated just below the Curie temperature and remained unchanged to room temperature. The single‐vortex state was the only magnetic state observed at room temperature after weak field thermoremanent magnetization acquisition experiments. These observations indicate that single‐vortex states occur in titanomagnetite and, like single‐domain particles, have high thermal stability necessary for carrying stable paleomagnetic remanence.more » « less
-
Abstract The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.more » « less
An official website of the United States government
