skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Antennal transcriptome analysis reveals sensory receptors potentially associated with host detection in the livestock pest Lucilia cuprina
Abstract BackgroundLucilia cuprina(Wiedemann, 1830) (Diptera: Calliphoridae) is the main causative agent of flystrike of sheep in Australia and New Zealand. Female flies lay eggs in an open wound or natural orifice, and the developing larvae eat the host’s tissues, a condition called myiasis. To improve our understanding of host-seeking behavior, we quantified gene expression in male and female antennae based on their behavior. MethodsA spatial olfactometer was used to evaluate the olfactory response ofL. cuprinamated males and gravid females to fresh or rotting beef. Antennal RNA-Seq analysis was used to identify sensory receptors differentially expressed between groups. ResultsLucilia cuprinafemales were more attracted to rotten compared to fresh beef (> fivefold increase). However, males and some females did not respond to either type of beef. RNA-Seq analysis was performed on antennae dissected from attracted females, non-attracted females and males. Transcripts encoding sensory receptors from 11 gene families were identified above a threshold (≥ 5 transcript per million) including 49 ATP-binding cassette transporters (ABCs), two ammonium transporters (AMTs), 37 odorant receptors (ORs), 16 ionotropic receptors (IRs), 5 gustatory receptors (GRs), 22 odorant-binding proteins (OBPs), 9 CD36-sensory neuron membrane proteins (CD36/SNMPs), 4 chemosensory proteins (CSPs), 4 myeloid lipid-recognition (ML) and Niemann-Pick C2 disease proteins (ML/NPC2), 2pickpocketreceptors (PPKs) and 3 transient receptor potential channels (TRPs). Differential expression analyses identified sex-biased sensory receptors. ConclusionsWe identified sensory receptors that were differentially expressed between the antennae of both sexes and hence may be associated with host detection by female flies. The most promising for future investigations were as follows: an odorant receptor (LcupOR46) which is female-biased inL. cuprinaandCochliomyia hominivoraxCoquerel, 1858; an ABC transporter (ABC G23.1) that was the sole sensory receptor upregulated in the antennae of females attracted to rotting beef compared to non-attracted females; a female-biased ammonia transporter (AMT_Rh50), which was previously associated with ammonium detection inDrosophila melanogasterMeigen, 1830. This is the first report suggesting a possible role for ABC transporters inL. cuprinaolfaction and potentially in other insects. Graphical Abstract  more » « less
Award ID(s):
2030345
PAR ID:
10524647
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Parasites & Vectors
Volume:
17
Issue:
1
ISSN:
1756-3305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundThe blowflyLucilia cuprinais a destructive parasite of sheep that causes flystrike or myiasis. Larvae consume the animal’s living flesh, producing large wounds that can lead to death. The main aim of this study was to identify genes that may play important roles in the behavior and physiology ofL. cuprinalarvae. MethodsAn RNA-Seq analysis of RNA from whole larvae at different developmental stages and third-instar head and gut tissues was used to identify sensory receptors and other genes relevant to the physiology ofL. cuprinalarvae. In addition, CRISPR/Cas9 gene editing was used to obtain a loss-of-function mutation for theL. cuprinaodorant coreceptor gene (LcupOrco). The response of mutant larvae and adult females to fresh and rotten meat at different temperatures was evaluated. ResultsThe RNA-Seq analysis suggested that odorant (OR), gustatory, ionotropic, andPickpocketreceptors may not play a central role in theL. cuprinalarval sensory signaling and digestive systems. Rather, ATP-binding cassettes (ABCs) were highly enriched in head and gut RNA, and odorant-binding proteins (OBPs) only in the head. To confirm that ORs are not essential for larval detection of rotten beef, diet-choice assays were performed including larvae and adults homozygous for a null mutation inLcupOrco. While the attraction of adult females to rotten beef was disrupted,LcupOrcomutant larvae showed no change in diet preference. ConclusionsThe expression pattern of the ABC and OBP gene families suggests a central role in the sensory system of theL. cuprinalarva for these receptors. Behavioral assays showed that ORs are essential for the adult female response to rotten beef, but not for larval behavior. These findings are consistent with high levels of expression ofLcupOrcoin the adult female antenna but very low expression in larvae. Graphical abstract 
    more » « less
  2. Abstract Firefly flashes are well-known visual signals used by these insects to find, identify, and choose mates. However, many firefly species have lost the ability to produce light as adults. These “unlighted” species generally lack developed adult light organs, are diurnal rather than nocturnal, and are believed to use volatile pheromones acting over a distance to locate mates. While cuticular hydrocarbons, which may function in mate recognition at close range, have been examined for a handful of the over 2000 extant firefly species, no volatile pheromone has ever been identified. In this study, using coupled gas chromatography - electroantennographic detection, we detected a single female-emitted compound that elicited antennal responses from wild-caught male winter fireflies,Photinus corruscus. The compound was identified as (1S)-exo-3-hydroxycamphor (hydroxycamphor). In field trials at two sites across the species’ eastern North American range, large numbers of maleP. corruscuswere attracted to synthesized hydroxycamphor, verifying its function as a volatile sex attractant pheromone. Males spent more time in contact with lures treated with synthesized hydroxycamphor than those treated with solvent only in laboratory two-choice assays. Further, using single sensillum recordings, we characterized a pheromone-sensitive odorant receptor neuron in a specific olfactory sensillum on maleP. corruscusantennae and demonstrated its sensitivity to hydroxycamphor. Thus, this study has identified the first volatile pheromone and its corresponding sensory neuron for any firefly species,and provides a tool for monitoringP. corruscuspopulations for conservation and further inquiry into the chemical and cellular bases for sexual communication among fireflies. 
    more » « less
  3. Palli, Subba Reddy (Ed.)
    The transformer ( tra ) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina . Sex-specific tra RNA splicing is controlled by Sex lethal ( Sxl ) in Drosophila melanogaster but is auto-regulated in L . cuprina . Sxl also represses X chromosome dosage compensation in female D . melanogaster . We have developed conditional Lctra RNAi knockdown strains using the tet-off system. Four strains did not produce females on diet without tetracycline and could potentially be used for genetic control of L . cuprina . In one strain, which showed both maternal and zygotic tTA expression, most XX transformed males died at the pupal stage. RNAseq and qRT-PCR analyses of mid-stage pupae showed increased expression of X-linked genes in XX individuals. These results suggest that Lctra promotes somatic sexual differentiation and inhibits X chromosome dosage compensation in female L . cuprina . However, XX flies homozygous for a loss-of-function Lctra knockin mutation were fully transformed and showed high pupal eclosion. Two of five X-linked genes examined showed a significant increase in mRNA levels in XX males. The stronger phenotype in the RNAi knockdown strain could indicate that maternal Lctra expression may be essential for initiation of dosage compensation suppression in female embryos. 
    more » « less
  4. Abstract BackgroundMorphologic sex differences between males and females typically emerge after the primordial germ cell migration and gonad formation, although sex is determined at fertilization based on chromosome composition. A key debated sexual difference is the embryonic developmental rate, within vitroproduced male embryos often developing faster. However, the molecular mechanisms driving early embryonic sex differences remain unclear. ResultsTo investigate the transcriptional sex difference during early development,in vitroproduced bovine blastocysts were collected and sexed by PCR. A significant male-biased development was observed in expanded blastocysts. Ultra-low input RNA-seq analysis identified 837 DEGs, with 231 upregulated and 606 downregulated in males. Functional enrichment analysis revealed male-biased DEGs were associated with metabolic regulation, whereas female-biased DEGs were related to female gonad development, sex differentiation, inflammatory pathways, and TGF-beta signaling. Comparing X chromosome and autosome expression ratio, we found that female-biased DEGs contributed to the higher X-linked gene dosage, a phenomenon not observed in male embryos. Moreover, we identified the sex-biased transcription factors and RNA-bind proteins, including pluripotent factors such asSOX21andPRDM14, and splicing factorsFMR1andHNRNPH2. Additionally, we revealed 1,555 significantly sex-biased differential alternative splicing (AS), predominantly skipped exons, mapped to 906 genes, with 59 overlapping with DEGs enriched in metabolic and autophagy pathways. By incorporating novel isoforms from long reads sequencing, we identified 1,151 sex-biased differentially expressed isoforms (DEIs) associated with 1,017 genes. Functional analysis showed that female-biased DEIs were involved in the negative regulation of transcriptional activity, while male-biased DEIs were related to energy metabolism. Furthermore, we identified sex-biased differential exon usage inDENND1B, DIS3L2, DOCK11, IL1RAPL2,andZRSR2Y,indicating their sex-specific regulation in early embryo development. ConclusionThis study provided a comprehensive analysis of transcriptome differences between male and female bovine blastocysts, integrating sex-biased gene expression, alternative splicing, and isoform dynamics. Our findings indicate that enriched metabolism processes in male embryos may contribute to the faster developmental pace, providing insights into sex-specific regulatory mechanisms during early embryogenesis. Plain English summaryMale and female early embryos develop at different speeds, with male embryos often developing faster than female embryos. However, the reasons behind these early differences remain unclear. In this study, we examined gene activity in bovine embryos to uncover the biological factors regulating these early sex differences. We collected in vitro-produced bovine blastocysts, examined their sex, and confirmed that male embryos develop faster. By analyzing global gene activity, including alternative splicing, which allows one gene to code for multiple RNA isoforms and proteins, we found distinct gene expression profiles between male and female embryos. Male embryos showed higher activity in genes related to metabolism and cellular functions, while female embryos had increased activity in genes associated with female-specific gonad development and gene expression regulation. We also examined differences in how genes on the X chromosome were expressed. Female embryos had higher X-linked gene expression, which may contribute to sex-specific developmental regulation. Additionally, we identified sex-specific transcription factors and RNA-binding proteins that regulate early embryo development, some of which are known to control pluripotency and gene splicing. Overall, our study provides new insights into how gene activity shapes early sex differences, suggesting that enhanced metabolism in male embryos may be a key driver of their faster developmental rate. HighlightsMale embryos develop faster due to increased gene expression in metabolism pathwaysFemale embryos exhibit higher X-linked gene expression, suggesting X-dosage compensation plays a role in early developmentSex-biased alternative splicing events contribute to embryonic metabolism, autophagy, and transcriptional regulation in embryosSex-biased isoform diversity contributes to distinct developmental regulation in male and female embryosKey pluripotency factors (SOX21, PRDM14) and splicing regulators (FMR1, HNRNPH2) drive sex-specific gene expression 
    more » « less
  5. Abstract ObjectivesChimpanzees (Pan troglodytes) are notable for exhibiting high levels of male‐to‐female aggression. Much of this aggression from adult males serves sexually coercive functions. Despite being smaller and lower‐ranking than adult males, adolescent males also engage in regular aggression against adult females. Here, we test whether the primary function of this aggression is sexual coercion, as in adult males, or, alternatively, whether adolescent males use aggression to establish social dominance over females. Materials and MethodsWe analyzed 1771 copulations and 1812 instances of male‐initiated aggression between adolescent males (aged nine through 14 years) and adult females across 21 years of observation of the Kanyawara chimpanzee community in Kibale National Park, Uganda. ResultsOur test of the sexual coercion hypothesis revealed that adolescent males did not selectively target cycling females for aggression, nor did aggression against cycling females predict rates of copulation with those females. Our test of the social dominance hypothesis showed that males succeeded in dominating all adult females before, or soon after, dominating their first adult male. Additionally, we found that adolescent males dominated females approximately in the order of the females' own ranks, from the bottom to the top of the female hierarchy. DiscussionOur data illustrate that the establishment of social dominance was more important than sexual coercion in explaining patterns of adolescent male aggression toward females. In comparison, evidence for sexual coercion was clear and compelling in adult males. These findings highlight that the primary function of male‐to‐female aggression differs between adolescent and adult males. 
    more » « less