Abstract Extreme (>20 nT/s) geomagnetic disturbances (GMDs, also denoted as MPEs—magnetic perturbation events)—impulsive nighttime disturbances with time scale ∼5–10 min, have sufficient amplitude to cause bursts of geomagnetically induced currents (GICs) that can damage technical infrastructure. In this study, we present occurrence statistics for extreme GMD events from five stations in the MACCS and AUTUMNX magnetometer arrays in Arctic Canada at magnetic latitudes ranging from 65° to 75°. We report all large (≥6 nT/s) and extreme GMDs from these stations from 2011 through 2022 to analyze variations of GMD activity over a full solar cycle and compare them to those found in three earlier studies. GMD activity between 2011 and 2022 did not closely follow the sunspot cycle, but instead was lowest during its rising phase and maximum (2011–2014) and highest during the early declining phase (2015–2017). Most of these GMDs, especially the most extreme, were associated with high‐speed solar wind streams (Vsw >600 km/s) and steady solar wind pressure. All extreme GMDs occurred within 80 min after substorm onsets, but few within 5 min. Multistation data often revealed a poleward progression of GMDs, consistent with a tailward retreat of the magnetotail reconnection region. These observations indicate that extreme GIC hazard conditions can occur for a variety of solar wind drivers and geomagnetic conditions, not only for fast‐coronal mass ejection driven storms.
more »
« less
Quantifying Extreme Values in Geomagnetic Perturbations Using Ground Magnetic Records
Abstract We comprehensively analyzed geomagnetic perturbations using ground magnetic records from over 400 stations spanning four solar cycles, from 1976 to 2023. We assess the perturbations in the three magnetic components separately. Our study covers low, middle, and high magnetic latitudes in the northern magnetic hemisphere, with the primary objective of quantifying extreme values and evaluating their variability on magnetic latitude, local time, and solar cycle phases “minimum, ascending, maximum, and declining.” Our findings reveal spatial patterns to be less discernible as perturbations intensify, with distinct responses at middle and high latitudes. The extreme values, defined as percentiles 0 and 100, were observed to be localized and randomly distributed in local time, especially in the east magnetic component. Additionally, we observed dusk‐dawn asymmetries in the magnitude of perturbations related to the auroral electrojets, indicating complex interactions between the magnetosphere and ionosphere. Furthermore, the results reveal a preference for the most significant extreme values to occur in the declining phase of the solar cycle. These insights deepen our understanding of geomagnetic perturbations and their variability, contributing to space weather forecasting and mitigation strategies.
more »
« less
- PAR ID:
- 10524654
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 22
- Issue:
- 7
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a comprehensive statistical analysis of high‐frequency transient‐large‐amplitude (TLA) magnetic perturbation events that occurred at 12 high‐latitude ground magnetometer stations throughout Solar Cycle 24 from 2009 to 2019. TLA signatures are defined as one or more second‐timescale dB/dtinterval with magnitude ≥6 nT/s within an hour event window. This study characterizes high‐frequency TLA events based on their spatial and temporal behavior, relation to ring current activity, auroral substorms, and nighttime geomagnetic disturbance (GMD) events. We show that TLA events occur primarily at night, solely in the high‐latitude region above 60° geomagnetic latitude, and commonly within 30 min of substorm onsets. The largest TLA events occurred more often in the declining phase of the solar cycle when ring current activity was lower and solar wind velocity was higher, suggesting association to high‐speed streams caused by coronal holes and subsequent corotating interaction regions reaching Earth. TLA perturbations often occurred preceding or within the most extreme nighttime GMD events that have 5–10 min timescales, but the TLA intervals were often even more localized than the ∼300 km effective scale size of GMDs. We provide evidence that shows TLA‐related GMD events are associated with dipolarization fronts in the magnetotail and fast flows toward Earth and are closely temporally associated with poleward boundary intensifications (PBIs) and auroral streamers. The highly localized behavior and connection to the most extreme GMD events suggests that TLA intervals are a ground manifestation of features within rapid and complex ionospheric structures that can drive geomagnetically induced currents.more » « less
-
Abstract We investigate the spatiotemporal evolution of high-degree acoustic-mode frequencies of the Sun and surface magnetic activity over the course of multiple solar cycles, to improve our understanding of the connection between the solar interior and atmosphere. We focus on high-degreep-modes due to their ability to characterize conditions in the shear layer just below the solar surface, and analyze 22 yr of oscillation frequencies obtained from the Global Oscillation Network Group. Considering 10.7 cm radio flux measurements, the sunspot number, and the local magnetic activity index as solar-activity proxies, we find strong correlation between the mode frequencies and each activity index. We further investigate the hemispheric asymmetry associated with oscillation frequencies and magnetic activity proxies, and find that both were dominant in the southern hemisphere during the descending phase of cycle 23, while in cycle 24 these quantities fluctuated between northern and southern hemispheres. Analyzing the frequencies at different latitudes with the progression of solar cycles, we observe that the variations at midlatitudes were dominant in the southern hemisphere during the maximum-activity period of cycle 24, but the values overlap as the cycle advances toward the minimum phase. The mode frequencies at the beginning of cycle 25 are found to be dominant in the southern hemisphere following the pattern of magnetic activity. The analysis provides added evidence that the variability in oscillation frequencies is caused by both strong and weak magnetic fields.more » « less
-
Abstract This study investigates the global distribution of electron temperature enhancement observed by Defense Meteorological Satellite Program F16 satellite and its dependence on the season and solar activity for the solar maximum (2014) and minimum (2018) years during geomagnetic quiet times (maximum per day ap <10). Electron temperature enhancements occurred mainly over the North American‐Atlantic (260°–360°E) and Eurasia (0°–160°E) (Southern Oceania (80°–280°E)) sector in the Northern (Southern) Hemisphere and are prominent in the winter hemispheres and solar maximum year. They have obvious longitude characteristics. Interestingly, they could extend to geomagnetic equatorial regions in the North American‐Atlantic sector from high to low latitudes in the December Solstice, further crossed the magnetic equator, and merged into the Southern Hemisphere in 2014, where the maximum temperature reached ∼3500 K. Our analysis indicates that low‐energy electrons (<100 eV) associated with photoelectron from the conjugate sunlit hemisphere, can contribute to these enhancements. Furthermore, the local geomagnetic declination, magnetic equator position, and terminator position at magnetic conjugate points together can impact the global distribution of photoelectrons of different energies and therefore the electron temperature enhancement distribution. Other processes (including local electron density variation) may play certain roles as well.more » « less
-
Abstract While whistler‐mode waves are generated by injected anisotropic electrons on the nightside, the observed day‐night asymmetry of wave distributions raises an intriguing question about their generation on the dayside. In this study, we evaluate the distributions of whistler‐mode wave amplitudes and electrons as a function of distance from the magnetopause (MP) on the dayside from 6 to 18 hr in magnetic local time (MLT) within ±18° of magnetic latitude using the Time History of Events and Macroscale Interaction During Substorms measurements from June 2010 to August 2018. Specifically, under different levels of solar wind dynamic pressure and geomagnetic index, we conduct a statistical analysis to examine whistler‐mode wave amplitude, as well as anisotropy and phase space density (PSD) of source electrons across 1–20 keV energies, which potentially provide a source of free energy for wave generation. In coordinates relative to the MP, we find that lower‐band (0.05–0.5fce) waves occur much closer to the MP than upper‐band (0.5–0.8fce) waves, wherefceis electron cyclotron frequency. Our statistical results reveal that strong waves are associated with high anisotropy and high PSD of source electrons near the equator, indicating a preferred region for local wave generation on the dayside. Over 10–14 hr in MLT, as latitude increases, electron anisotropy decreases, while whistler‐mode wave amplitudes increase, suggesting that wave propagation from the equator to higher latitudes, along with amplification along the propagation path, is necessary to explain the observed waves on the dayside.more » « less
An official website of the United States government
