Abstract Reported herein is a continuous one‐step melt extrusion approach for high‐density polyethylene (HDPE) vitrimers. A grafting agent and a coagent were used to produce high‐performing vitrimers. Maleic anhydride (MA) served as a reactive agent to facilitate crosslinking, while dimethyl maleate (DM) acted as a grafting enhancer by reducing the surface energy of HDPE grafted with MA. For comparison, MA alone was also tested as a grafting agent. The vitrimers obtained displayed superior mechanical properties compared with HDPE. The storage modulus, as well as crystallinity, were determined for the HDPE vitrimers. These vitrimers are reprocessable, thus supporting recycling efforts despite their crosslinked nature, owing to very fast relaxation due to low activation energy for the transesterification reaction. Consequently, these vitrimers are not only recyclable but also exhibit enhanced thermal and mechanical properties compared with conventional HDPE.
more »
« less
Continuous one-pot melt extrusion approach for high-density polyethylene-based vitrimers
In this presenation, I will discuss a continuous melt extrusion approach in one go for the synthesis of high-density polyethylene (HDPE)-based vitrimers. Vitrimers are produced with two grafting two agents, with maleic anhydride serving as a reactive agent to facilitate crosslinking while dimethyl maleate helped to lower the surface energy for better maleation. This improved property is reflected in the 2 wt% system, where the crosslinking density had doubled and enhanced the stiffness of the material. Overall, these vitrimers had enhanced tensile stress at break and impact resistance as compared to that of HDPE, while yet having a similar melting temperature and tensile stress at yield. The crystallinity of the polymers decreased and thus these materials may be strong candidates for 3D printing applications as they are less susceptible to the warping issues that are encountered with unmodifed HDPE. These vitrimers are reprocessable with torque pf ~ 30 Nm, and thus they can be readily recycled despite the crosslinking of layers which imparts them with better mechanical and thermal properties.
more »
« less
- Award ID(s):
- 2044877
- PAR ID:
- 10524733
- Publisher / Repository:
- ACS
- Date Published:
- ISSN:
- 3928296
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reported herein is a continuous one-step melt extrusion approach for highdensity polyethylene (HDPE) vitrimers. A grafting agent and a coagent were used to produce high-performing vitrimers. Maleic anhydride (MA) served as a reactive agent to facilitate crosslinking, while dimethyl maleate (DM) acted as a grafting enhancer by reducing the surface energy of HDPE grafted with MA. For comparison, MA alone was also tested as a grafting agent. The vitrimers obtained displayed superior mechanical properties compared with HDPE. The storage modulus, as well as crystallinity, were determined for the HDPE vitrimers. These vitrimers are reprocessable, thus supporting recycling efforts despite their crosslinked nature, owing to very fast relaxation due to low activation energy for the transesterification reaction. Consequently, these vitrimers are not only recyclable but also exhibit enhanced thermal and mechanical properties compared with conventional HDPE.more » « less
-
Polymer blends offer a cost-effective way to create new materials with enhanced properties. However, blending different polymers often results in phase separation with weak interfacial adhesion, leading to inferior mechanical properties. Given that high-density polyethylene (HDPE) and isotactic polypropylene (iPP) are the largest volume polymers, there is significant interest in developing blends of these materials. Applying a singlet nitrene-facilitated dynamic crosslinking method recently developed in our lab, in this study we prepared a series of HDPE/iPP blends across a range of compositions with enhanced compatibility and tunable thermomechanical properties. By incorporating a small amount of a dynamic crosslinker featuring a siloxane core and bis-aromatic sulfonyl azides (bis-ASA) into varying compositions of HDPE and iPP, we achieve significant improvements in the compatibility. AFM and SEM imaging analyses reveal that the compatibilized blends exhibit superior homogeneity compared to control blends. Additionally, these blends show significant improvements in elongation at break, toughness, and oxidative stability. The dynamic crosslinking further enhances the blends’ creep resistance while retains reprocessability, paving the way for the development of tailorable polymer blends for various applications.more » « less
-
The development of vitrimers with dynamic covalent bonds enables reprocessability in crosslinked networks, offering a sustainable alternative to conventional thermosets. In this work, a thiol-acrylate vitrimer was synthesized from lignin-derivable (bis)phenols (guaiacol and bisguaiacol F) and compared to a control derived from petroleum-based precursors (phenol and bisphenol F) to investigate the effect of structural differences on network properties and thermal reprocessing. The presence of methoxy groups in the lignin-derivable vitrimer promoted intermolecular interactions by serving as additional hydrogen bonding acceptors during curing, leading to a denser network, as evidenced by a higher rubbery storage modulus (∼2.4 MPa vs. ∼1.4 MPa) and glass transition temperature (∼34 °C vs. ∼28 °C). The lignin-derivable vitrimer exhibited a slightly higher elongation-at-break (∼170% vs. ∼130%) and improved mechanical robustness, including a nearly two-fold increase in Young's modulus (∼6.9 MPa vs. ∼3.4 MPa) and toughness (∼750 kJ m−3vs. ∼390 kJ m−3). The similar stress relaxation behavior and activation energy of viscous flow indicated comparable bond exchange dynamics between the two vitrimers, while the lignin-derivable system demonstrated higher thermal healing efficiency with improved recovery of tensile properties after reprocessing. These findings highlight the potential of lignin-based aromatics in designing mechanically robust and sustainable vitrimers, aligning with efforts to develop renewable and reprocessable polymeric materials.more » « less
-
Abstract This report details how sequential crosslinking processes can be applied to develop properties in sulfur‐bisphenol A composites. Olefinic carbons were first crosslinked by inverse vulcanization (InV) at 180°C and then aryl carbon crosslinking was affected via radical‐induced aryl halide‐sulfur polymerization (RASP) at 220°C. To demonstrate that these two crosslinking mechanisms are orthogonal and can be used to affect stepwise property changes,O,O′‐diallyl‐2,2′,5,5′‐tetrabromobisphenol A was selected as a comonomer. After InV of the monomer with 90 wt% sulfur, a flexible plastic material having an elongation at break of 89% was obtained, whereas after heating this premade polymer to initiate RASP, the polymer develops a threefold increase in its tensile strength and has an elongation at break of only 29%. The sequential crosslinking strategy demonstrated herein thus provides an innovative approach to tuning the properties of high sulfur‐content materials.more » « less
An official website of the United States government

