skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping wetlands in Northeast China by using knowledge-based algorithms and microwave (PALSAR-2, Sentinel-1), optical (Sentinel-2, Landsat), and thermal (MODIS) images
Award ID(s):
2200310 1911955
PAR ID:
10524911
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Academic Press Ltd - Elsevier Science Ltd
Date Published:
Journal Name:
Journal of Environmental Management
Volume:
349
Issue:
C
ISSN:
0301-4797
Page Range / eLocation ID:
119618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quaking aspen is an important deciduous tree species across interior western U.S. forests. Existing maps of aspen distribution are based on Landsat imagery and often miss small stands (<0.09 ha or 30 m2), which rapidly regrow when managed or following disturbance. In this study, we present methods for deriving a new regional map of aspen forests using one year of Sentinel-1 (S1) and Sentinel-2 (S2) imagery in Google Earth Engine. Using observed annual phenology of aspen across the Southern Rockies and leveraging the frequent temporal resolution of S1 and S2, ecologically relevant seasonal imagery composites were developed. We derived spectral indices and radar textural features targeting the canopy structure, moisture, and chlorophyll content. Using spatial block cross-validation and Random Forests, we assessed the accuracy of different scenarios and selected the best-performing set of features for classification. Comparisons were then made with existing landcover products across the study region. The resulting map improves on existing products in both accuracy (0.93 average F1-score) and detection of smaller forest patches. These methods enable accurate mapping at spatial and temporal scales relevant to forest management for one of the most widely distributed tree species in North America. 
    more » « less
  2. Abstract Understanding and attributing changes to water quality is essential to the study and management of coastal ecosystems and the ecological functions they sustain (e.g., primary productivity, predation, and submerged aquatic vegetation growth). However, describing patterns of water clarity—a key aspect of water quality—over meaningful scales in space and time is challenged by high spatial and temporal variability due to natural and anthropogenic processes. Regionally tuned satellite algorithms can provide a more complete understanding of coastal water clarity changes and drivers. In this study, we used open‐access satellite data and low‐cost in situ methods to improve estimates of water clarity in an optically complex coastal water body. Specifically, we created a remote sensing water clarity product by compiling Landsat‐8 and Sentinel‐2 reflectance data with long‐term Secchi depth measurements at 12 sites over 8 years in a shallow turbid coastal lagoon system in Virginia, USA. Our satellite‐based model explained ∼33% of the variation in in situ water clarity. Our approach increases the spatiotemporal coverage of in situ water clarity data and improves estimates from bio‐optical algorithms that overpredicted water clarity. This could lead to a better understanding of water clarity changes and drivers to better predict how water quality will change in the future. 
    more » « less
  3. ### Overview The SACHI (Sentinel-1/2 derived Arctic Coastal Human Impact) dataset has been developed as part of the HORIZON2020 project Nunataryuk by b.geos (www.bgeos.com). V1 covered a 100km buffer from the Arctic Coast (land area), for areas with permafrost near the coast. V2 covers additional selected areas extending the coverage to the south. It is based on Sentinel-1 and Sentinel-2 data from 2016-2020 using the algorithms described in Bartsch et al. (2020). It is a supplement to Bartsch et al. (2023). This dataset contains detected coastal infrastructure separated into seven different categories: linear transport infrastructure (asphalt), linear transport infrastructure (gravel), linear transport infrastructure (undefined), buildings (and other constructions such as bridges), other impacted area (includes gravel pads, mining sites), airstrip, and reservoir or other water body impacted by human activities. This SACHI version 2 dataset was post-processed by the Permafrost Discovery Gateway visualization pipeline. This workflow cleaned, standardized, and visualized the data as two Tile Matrix Sets per year. One Tile Matrix Set is the data in the form of GeoPackages, or staged tiles, and the other Tile Matrix Set is the staged tiles in the form of GeoTIFF tiles. The highest resolution tiles were resampled to produce GeoTIFFs for lower resolutions. This data is visualized on the Permafrost Discovery Gateway portal: https://arcticdata.io/catalog/portals/permafrost/Imagery-Viewer ### References Bartsch, A., Widhalm, B., von Baeckmann, C., Efimova, A., Tanguy, R., and Pointner, G. (2023). Sentinel-1/2 derived Arctic Coastal Human Impact dataset (SACHI) (v2.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10160636 Bartsch, A., G. Pointner, I. Nitze, A. Efimova, D. Jakober, S. Ley, E. Högström, G. Grosse, P. Schweitzer (2021): Expanding infrastructure and growing anthropogenic impacts along Arctic coasts. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac317 Bartsch, A., Pointner, G., Ingeman-Nielsen, T. and Lu, W. (2020), ‘Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2’, Remote Sensing 12(15), 2368. ### Access Data files output from the visualization workflow are available for download at: [http://arcticdata.io/data/10.18739/A21J97929](http://arcticdata.io/data/10.18739/A21J97929) To download all files in the command line, run the following command in a terminal: `wget -r -np -nH --cut-dirs=3 -R '\?C=' -R robots.txt https://arcticdata.io/data/10.18739/A21J97929/` To download a subdirectory of the archived files, add the subdirectories to the end of the URL above. 
    more » « less