skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remarkable variation in androecial morphology is closely associated with corolla traits in Western Hemisphere Justiciinae (Acanthaceae: Justicieae)
Abstract Background and AimsFew studies of angiosperms have focused on androecial evolution in conjunction with evolutionary shifts in corolla morphology and pollinator relationships. The Western Hemisphere clade of Justiciinae (Acanthaceae) presents the rare opportunity to examine remarkable diversity in staminal morphology. We took a phylogenetically informed approach to examine staminal diversity in this hypervariable group and asked whether differences in anther thecae separation is associated with phylogenetically informed patterns of variation in corolla morphology. We further discuss evidence for associations between anther diversity and pollinators in this lineage. MethodsFor the Dianthera/Sarotheca/Plagiacanthus (DSP) clade of Western Hemisphere Justiciinae, we characterized floral diversity based on a series of corolla measurements and using a model-based clustering approach. We then tested for correlations between anther thecae separation and corolla traits, and for shifts in trait evolution, including evidence for convergence. Key ResultsThere is evolutionary vagility in corolla and anther traits across the DSP clade with little signal of phylogenetic constraint. Floral morphology clusters into four distinct groups that are, in turn, strongly associated with anther thecae separation, a novel result in Acanthaceae and, to our knowledge, across flowering plants. These cluster groups are marked by floral traits that strongly point to associations with pollinating animals. Specifically, species that are known or likely to be hummingbird pollinated have stamens with parallel thecae, whereas those that are likely bee or fly pollinated have stamens with offset, divergent thecae. ConclusionsOur results suggest that anther thecae separation is likely under selection in concert with other corolla characters. Significant morphological shifts detected by our analyses corresponded to putative shifts from insect to hummingbird pollination. Results from this study support the hypothesis that floral structures function in an integrated manner and are likely subject to selection as a suite. Further, these changes can be hypothesized to represent adaptive evolution.  more » « less
Award ID(s):
1754792 1754845
PAR ID:
10524917
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Annals of Botany
Date Published:
Journal Name:
Annals of Botany
Volume:
132
Issue:
1
ISSN:
0305-7364
Page Range / eLocation ID:
43 to 60
Subject(s) / Keyword(s):
Acanthaceae anther diversity covariation floral morphology hummingbird pollination insect pollination Justicia phylogenetic comparative methods
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A fundamental question in evolutionary biology is how clades of organisms exert influence on one another. The evolution of the flower and subsequent plant/pollinator coevolution are major innovations that have operated in flowering plants to promote species radiations at a variety of taxonomic levels in the Neotropics. Here we test the hypothesis that pollination by Neotropical endemic hummingbirds drove the evolution of two unique stigma traits in correlation with other floral traits in New World Salvia (Lamiaceae). We examined morphometric shapes of stigma lobing across 400 Salvia spp., scored presence and absence of a stigma brush across Salvia, and used a suite of phylogenetic comparative methods to detect shape regime shifts, correlation of trait shifts with BayesTraits and phylogenetic generalized least square regressions, and the influence of scored pollinators on trait evolution using OUwie. We found that a major Neotropical clade of Salvia evolved a correlated set of stigma features, with a longer upper stigma lobe and stigmatic brush, following an early shift to hummingbird pollination. Evolutionary constraint is evident as subsequent shifts to bee pollination largely retained these two features. Our results support the hypothesis that hummingbirds guided the correlative shifts in corolla, anther connective, style and stigma shape in Neotropical Salvia, despite repeated shifts back to bee pollination. 
    more » « less
  2. Summary Pollination syndromes are a key component of flowering plant diversification, prompting questions about the architecture of single traits and genetic coordination among traits. Here, we investigate the genetics of extreme floral divergence between naturally hybridizing monkeyflowers,Mimulus parishii(self‐pollinated) andM. cardinalis(hummingbird‐pollinated).We mapped quantitative trait loci (QTLs) for 18 pigment, pollinator reward/handling, and dimensional traits in parallel sets of F2hybrids plus recombinant inbred lines and generated nearly isogenic lines (NILs) for two dimensional traits, pistil length and corolla size.Our multi‐population approach revealed a highly polygenic basis (n = 190 QTLs total) for pollination syndrome divergence, capturing minor QTLs even for pigment traits with leading major loci. There was significant QTL overlap within pigment and dimensional categories. Nectar volume QTLs clustered with those for floral dimensions, suggesting a partially shared module. The NILs refined two pistil length QTLs, only one of which has tightly correlated effects on other dimensional traits.An overall polygenic architecture of floral divergence is partially coordinated by genetic modules formed by linkage (pigments) and likely pleiotropy (dimensions plus nectar). This work illuminates pollinator syndrome diversification in a model radiation and generates a robust framework for molecular and ecological genomics. 
    more » « less
  3. Abstract Understanding how evolution proceeds from molecules to organisms to interactions requires integrative studies spanning biological levels. Linking phenotypes with associated genes and fitness illuminates how adaptive walks move organisms between fitness peaks. Floral evolution can confer rapid reproductive isolation, often converging in association with pollinator guilds. Within the monkeyflowers (Mimulussect.Erythranthe), yellow flowers within red hummingbird-pollinated species have arisen at least twice, suggesting possible pollinator shifts. We compare two yellow-flowered forms ofM. cardinalisandM. verbenaceusto their red counterparts in floral phenotypes, biochemistry, transcriptomic and genomic variation, and pollinator interactions. We find convergence in ongoing adaptive walks of both yellow morphs, with consistent changes in traits of large effect (floral pigments, associated gene expression), resulting in strong preference for yellow flowers by bumblebees. Shifts in scent emission and floral opening size also favor bee adaptation, suggesting smaller-effect steps from hummingbird to bee pollination. By examining intraspecific, incipient pollinator shifts in two related species, we elucidate adaptive walks at early stages, revealing how convergent large effect mutations (floral color) may drive pollinator attraction, followed by smaller effect changes for mechanical fit and reward access. Thus, ongoing adaptive walks may impact reproductive isolation and incipient speciation via convergent evolution. 
    more » « less
  4. Abstract PremiseCentropogonsubgenusCentropogoncomprises 55 species found primarily in midelevation Andean forests featuring some of the most curved flowers among angiosperms. Floral curvature is linked to coevolution with the sicklebill hummingbird, which pollinates most species. Despite charismatic flowers, there is limited knowledge about the phylogenetic relationships and floral evolution. MethodsWe conducted the first densely sampled phylogenomic analysis of the clade using methods that account for incomplete lineage sorting on a sequence capture dataset generated with a lineage‐specific probe set. Using phylogenetic comparative methods, we test for correlated evolution of two traits central to sicklebill pollination. ResultsWe improve understanding of species relationships by more than doubling past taxon sampling. We confirm the monophyly of the subgenus and two sections, and the non‐monophyly of remaining sections. The subgenus is characterized by high gene tree discordance. Three widespread species display contrasting phylogenetic dynamics, withC. cornutusforming a clade andC. granulosusandC. solanifoliusforming non‐monophyletic, biogeographically clustered lineages. Correlated evolution of floral curvature and inflorescence structure has led to multiple putative losses of sicklebill pollination. ConclusionsCentropogonsubgenusCentropogonadds to a growing body of literature of Andean plant clades with high gene tree discordance. This phylogeny serves as a foundational framework for further macroevolutionary investigations into the environmental and biogeographic factors shaping the evolution of pollination‐related traits. 
    more » « less
  5. Abstract Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator‐driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator‐driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee‐pollinated taxonCostus guanaiensisvar.tarmicusacross four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation ofC. guanaiensisvar.tarmicusto the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee‐to‐hummingbird pollination shift in the highest‐studied site. Our study is one of the few geographic‐scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant‐pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species. 
    more » « less