skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A fluorine rich borate ionic additive enabling high-voltage Li metal batteries
Lithium-metal batteries (LMBs) are promising alternatives to state-of-the-art Lithium-ion batteries (LIBs) to achieve higher energy densities. However, the poor cyclability of LMBs resulting from Li metal anode (Li0) irreversibility and concomitant electrolyte decompositions limits their practical applications. In this study, we reported a per-fluorinated salt, lithium tetrakis(perfluoro-tertbutyloxy)borate (abbreviated as Li-TFOB) as an electrolyte additive for Li-metal batteries, which contains 36 F atoms per molecule. This newly designed ionic additive tuned the chemical composition of the solid-electrolyte interphase (SEI) on Li0 by increasing the amount of LiF and Li-B-O inorganic species. DFT calculations and Molecular dynamics (MD) simulations indicated the preferential reduction of the TFOB anions at Li0, which occurs with a lower free energy change than PF6anions. The designed ionic additive enables the 4.6 V Li||LiNi0.6Mn0.2Co0.2O2 (NMC622) cell to achieve an average CE of 99.1 % and a high-capacity retention of >50 % after 500 cycles. This experiment-simulation joint study illustrated an attractive approach to accelerating the design of electrolytes and interphases for LMBs.  more » « less
Award ID(s):
2211824
PAR ID:
10524967
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Energy Storage Materials
Volume:
69
Issue:
C
ISSN:
2405-8297
Page Range / eLocation ID:
103397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm􀀀 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs. 
    more » « less
  2. Abstract The application of Li‐metal‐anodes (LMA) can significantly improve the energy density of state‐of‐the‐art lithium ion batteries. Lots of new electrolyte systems have been developed to form a stable solid electrolyte interphase (SEI) films, thereby achieving long‐term cycle stability of LMA. Unfortunately, the common problem faced by these electrolytes is poor oxidation stability, which rarely supports the cycling of high‐voltage Li‐metal batteries (LMBs). In this work, a new single‐component solvent dimethoxy(methyl)(3,3,3‐trifluoropropyl) silane is proposed. The electrolyte composed of this solvent and 3 mLiFSI salt successfully supports the long‐term cycle stability of limited‐Li (50 µm)||high loading LiCoO2(≈20 mg cm−2) cell at 4.6 V. Experiments and theoretical research results show that the outstanding performance of the electrolyte in high‐voltage LMBs is mainly attributed to its unique solvation structures and its great ability to build a highly stable and robust interphase on the surface of LMA and high‐voltage cathodes. Interestingly, this proposed electrolyte system builds a stable SEI film rich in LiF and Li3N on the surface of LMA by improving the two‐electron reduction activity of FSIwithout adding LiNO3, the well‐known additive used for LMBs. The design idea of the proposed electrolyte can guide the development of high‐voltage LMBs. 
    more » « less
  3. With plenty of charges and rich functional groups, bovine serum albumin (BSA) protein provides effective transport for multiple metallic ions inside blood vessels. Inspired by the unique ionic transport function, we develop a BSA protein coating to stabilize Li anode, regulate Li+ transport, and resolve the Li dendrite growth for Li metal batteries (LMBs). The experimental and simulation studies demonstrate that the coating has strong interactions with Li metal, increases the wetting with electrolyte, reduces the electrolyte/Li side reactions, and significantly suppresses the Li dendrite formation. As a result, the BSA coating exhibits excellent stability in the electrolyte and improves the performance of Li|Cu and Li|Li cells as well as the LiFePO4|Li batteries. This work reveals that LMBs can benefit from the biological function of BSA, i.e., special transport capability of metallic ions, and lays an important foundation in design of protein-based materials for effectively enhancing the electrochemical performance of energy storage systems. 
    more » « less
  4. Abstract Despite the potential to become the next‐generation energy storage technology, practical lithium–sulfur (Li–S) batteries are still plagued by the poor cyclability of the lithium‐metal anode and sluggish conversion kinetics of S species. In this study, lithium tritelluride (LiTe3), synthesized with a simple one‐step process, is introduced as a novel electrolyte additive for Li–S batteries. LiTe3quickly reacts with lithium polysulfides and functions as a redox mediator to greatly improve the cathode kinetics and the utilization of active materials in the cathode. Moreover, the formation of a Li2TeS3/Li2Te‐enriched interphase layer on the anode surface enhances ionic transport and stabilizes Li deposition. By regulating the chemistry on both the anode and cathode sides, this additive enables a stable operation of anode‐free Li–S batteries with only 0.1 mconcentration in conventional ether‐based electrolytes. The cell with the LiTe3additive retains 71% of the initial capacity after 100 cycles, while the control cell retains only 23%. More importantly, with high utilization of Te, the additive enables significantly better cyclability of anode‐free pouch full‐cells under lean electrolyte conditions. 
    more » « less
  5. Abstract Rechargeable secondary batteries, widely used in modern technology, are essential for mobile and consumer electronic devices and energy storage applications. Lithium (Li)‐ion batteries are currently the most popular choice due to their decent energy density. However, the increasing demand for higher energy density has led to the development of Li metal batteries (LMBs). Despite their potential, the commonly used liquid electrolyte‐based LMBs present serious safety concerns, such as dendrite growth and the risk of fire and explosion. To address these issues, using solid‐state electrolytes in batteries has emerged as a promising solution. In this Perspective, recent advancements are discussed in ionic covalent organic framework (ICOFs)‐based solid‐state electrolytes, identify current challenges in the field, and propose future research directions. Highly crystalline ion conductors with polymeric versatility show promise as the next‐generation solid‐state electrolytes. Specifically, the use of anionic or cationic COFs is examined for Li‐based batteries, highlight the high interfacial resistance caused by the intrinsic brittleness of crystalline ICOFs as the main limitation, and presents innovative ideas for developing all‐ and quasi‐solid‐state batteries using ICOF‐based solid‐state electrolytes. With these considerations and further developments, the potential for ICOFs is optimistic about enabling the realization of high‐energy‐density all‐solid‐state LMBs. 
    more » « less