skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Quantum group intertwiner space from quantum curved tetrahedron
Abstract

In this paper, we develop a quantum theory of homogeneously curved tetrahedron geometry, by applying the combinatorial quantization to the phase space of tetrahedron shapes defined in Haggardet al(2016Ann. Henri Poincaré172001–48). Our method is based on the relation between this phase space and the moduli space of SU(2) flat connections on a 4-punctured sphere. The quantization results in the physical Hilbert space as the solution of the quantum closure constraint, which quantizes the classical closure conditionM4M3M2M1=1,MνSU(2), for the homogeneously curved tetrahedron. The quantum groupUq(su(2))emerges as the gauge symmetry of a quantum tetrahedron. The physical Hilbert space of the quantum tetrahedron coincides with the Hilbert space of 4-valent intertwiners ofUq(su(2)). In addition, we define the area operators quantizing the face areas of the tetrahedron and compute the spectrum. The resulting spectrum is consistent with the usual Loop-Quantum-Gravity area spectrum in the large spin regime but is different for small spins. This work closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cosmological constant and provides a justification for the emergence of quantum group in the theory.

 
more » « less
NSF-PAR ID:
10524992
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
41
Issue:
16
ISSN:
0264-9381
Format(s):
Medium: X Size: Article No. 165008
Size(s):
Article No. 165008
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  2. Abstract

    We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficientlog10(fmean,σ)and black-hole mass, (ii) marginal evidence for a similar correlation betweenlog10(frms,σ)and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness withlog10(fmean,FWHM)andlog10(frms,FWHM), and (iv) marginal evidence for an anticorrelation of inclination angle withlog10(fmean,FWHM),log10(frms,σ), andlog10(fmean,σ). Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum,log10(FWHM/σ)rms, and the virial coefficient,log10(frms,σ), and investigate how BLR properties might be related to line-profile shape usingcaramelmodels.

     
    more » « less
  3. Abstract

    A test of lepton flavor universality inB±K±μ+μandB±K±e+edecays, as well as a measurement of differential and integrated branching fractions of a nonresonantB±K±μ+μdecay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions ats=13TeVrecorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractionsB(B±K±μ+μ)toB(B±K±e+e)is determined from the measured double ratioR(K)of these decays to the respective branching fractions of theB±J/ψK±withJ/ψμ+μande+edecays, which allow for significant cancellation of systematic uncertainties. The ratioR(K)is measured in the range1.1<q2<6.0GeV2, whereqis the invariant mass of the lepton pair, and is found to beR(K)=0.780.23+0.47, in agreement with the standard model expectationR(K)1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range,B(B±K±μ+μ)=(12.42±0.68)×108, is consistent with the present world-average value and has a comparable precision.

     
    more » « less
  4. Abstract

    Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronicX˜2Σ+(010)state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding theX˜2Σ+(010)state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of174YbOH using high-resolution optical spectroscopy on the nominally forbiddenX˜2Σ+(010)A˜2Π1/2(000)transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of theX˜2Σ+(010)state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on theX˜2Σ+(010)state and fit the molecule-frame dipole moment toDmol=2.16(1)Dand the effective electrong-factor togS=2.07(2). Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excitedA˜2Π1/2(000)state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.

     
    more » « less
  5. Abstract

    We derive the central stellar velocity dispersion function (VDF) for quiescent galaxies in 280 massive clusters withlog(M200/M)>14in IllustrisTNG300. The VDF is an independent tracer of the dark matter mass distribution of subhalos in galaxy clusters. Based on the IllustrisTNG cluster catalog, we select quiescent member subhalos with a specific star formation rate <2 × 10−11yr−1and stellar masslog(M*/M)>9. We then simulate fiber spectroscopy to measure the stellar velocity dispersion of the simulated galaxies; we compute the line-of-sight velocity dispersions of star particles within a cylindrical volume that penetrates the core of each subhalo. We construct the VDFs for quiescent subhalos withinR200. The simulated cluster VDF exceeds the simulated field VDF forlogσ*>2.2, indicating the preferential formation of large velocity dispersion galaxies in dense environments. The excess is similar in simulations and in the observations. We also compare the simulated VDF for the three most massive clusters withlog(M200/M)>15with the observed VDF for the two most massive clusters in the local Universe, Coma and A2029. Intriguingly, the simulated VDFs are significantly lower forlogσ*>2.0. This discrepancy results from (1) a smaller number of subhalos withlog(M*/M)>10in TNG300 compared to the observed clusters, and (2) a significant offset between the observed and simulatedM*σ*relations. The consistency in the overall shape of the observed and simulated VDFs offers a unique window into galaxy and structure formation in simulations.

     
    more » « less