skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid Protoplanet Formation in Vortices: Three-dimensional Local Simulations with Self-gravity
Abstract Disk vortices, seen in numerical simulations of protoplanetary disks and found observationally in Atacama Large Millimeter/submillimeter Array and Very Large Array images of these objects, are promising sites for planet formation given their pebble trapping abilities. Previous works have shown a strong concentration of pebbles in vortices, but gravitational collapse has only been shown in low-resolution, two-dimensional, global models. In this Letter, we aim to study the pebble concentration and gravitational collapse of pebble clouds in vortices via high-resolution, three-dimensional, local models. We performed simulations of the dynamics of gas and solids in a local shearing box where the gas is subject to convective overstability, generating a persistent giant vortex. We find that the vortex produces objects of Moon and Mars mass, with a mass function of power-law d ln N / d ln M = 1.6 ± 0.3 . The protoplanets grow rapidly, doubling in mass in about five orbits, following pebble accretion rates. The mass range and mass doubling rate are in broad agreement with previous low-resolution global models. We conclude that Mars-mass planetary embryos are the natural outcome of planet formation inside the disk vortices seen in millimeter and radio images of protoplanetary disks.  more » « less
Award ID(s):
2007422
PAR ID:
10525013
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
970
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L19
Size(s):
Article No. L19
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inward drift of millimeter–centimeter sized pebbles in protoplanetary disks has become an important part of our current theories of planet formation and, more recently, planet composition as well. The gas-to-dust size ratio of protoplanetary disks can provide an important constraint on how pebbles have drifted inward, provided that observational effects, especially resolution, can be accounted for. Here we present a method for fitting beam-convolved models to integrated intensity maps of line emission using theastropyPython package and use it to fit12CO moment zero maps of 10 Lupus and 10 Upper Scorpius protoplanetary disks from the ALMA Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) Program, a sample of disks around M3-K6 stars that cover the  ∼1–6 Myr of gas disk evolution. From the unconvolved best fit models, we measure the gas disk size ( R CO , 90 % model ), which we combine with the dust disk size ( R dust , 90 % FRANK ) from continuum visibility fits from M. Vioque et al. to compute beam-corrected gas-to-dust size ratios. In our sample, we find gas-to-dust size ratios between  ∼1 and  ∼5.5, with a median value of 2.7 8 0.32 + 0.37 . Contrary to models of dust evolution that predict an increasing size ratio with time, we find that the younger disks in Lupus have similar (or even larger) median ratios ( 3.0 2 0.33 + 0.33 ) than the older disks in Upper Sco ( 2.4 6 0.38 + 0.53 ) . A possible explanation for this discrepancy is that pebble drift is halted in dust traps combined with truncation of the gas disk by external photoevaporation in Upper Sco, although survivorship bias could also play a role. 
    more » « less
  2. Abstract Millimeter emitting dust grains have sizes that make them susceptible to drift in protoplanetary disks due to the difference between their orbital speed and that of the gas. The characteristic drift timescale depends on the surface density of the gas. By comparing disk radius measurements from Atacama Large Millimeter/submillimeter Array CO and continuum observations at millimeter wavelengths, the gas surface density profile and dust drift time can be self-consistently determined. We find that profiles which match the measured dust mass have very short drift timescales, an order of magnitude or more shorter than the stellar age, whereas profiles for disks that are on the cusp of gravitational instability, defined via the minimum value of the Toomre parameter, Q min 1 2 , have drift timescales comparable to the stellar lifetime. This holds for disks with masses of dust ≳5Macross a range of absolute ages from less than 1 Myr to over 10 Myr. The inferred disk masses scale with stellar mass as M disk M * / 5 Q min . This interpretation of the gas and dust disk sizes simultaneously solves two long standing issues regarding the dust lifetime and exoplanet mass budget, and suggests that we consider millimeter wavelength observations as a window into an underlying population of particles with a wide size distribution in secular evolution with a massive planetesimal disk. 
    more » « less
  3. Abstract Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of 0.35 0.05 + 0.06 M and 0.34 ± 0.05Mfor the stellar components, a semimajor axis of 22 ( 1 + 2 ) au, and an eccentricity of 0.21 ( 0.03 + 0.04 ) . With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and12CO (J= 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation. 
    more » « less
  4. Abstract The evolution of the gas mass of planet-forming disks around young stars is crucial for our understanding of planet formation, yet it has proven hard to constrain observationally, due both to the difficulties of measuring gas masses and the lack of a homogeneous sample. Here we present a large grid of thermochemical models that we use to measure protoplanetary gas disk masses of AGE-PRO, the Atacama Large Millimeter/submillimeter Array survey of Gas Evolution in PROtoplanetary disks. AGE-PRO covers a sample of 30 disks around similar spectral type (M3-K6) stars with ages between 0.1 and 10 Myr. Our approach is to simultaneously fit observations of CO isotopologues and N2H+, a complementary molecule produced when CO freezes out. We find that the median gas mass of the three regions decreases over time, from 7 . 0 2.6 + 4.4 × 1 0 3 M in Ophiuchus (≲1 Myr) to 9 . 4 3.4 + 5.4 × 1 0 4 M for Lupus (∼1–3 Myr) and 6 . 8 2.8 + 5.1 × 1 0 4 M for Upper Sco (∼2–6 Myr), with ∼1 dex scatter in gas mass in each region. We note that the gas mass distributions for Lupus and Upper Sco look very similar, which could be due to survivorship bias for the latter. The median bulk CO abundance in the CO emitting layer is found to be a factor ∼10 lower than the interstellar medium value but does not significantly change between Lupus and Upper Sco. From Lupus to Upper Sco, the median gas-to-dust mass ratio increases by a factor ∼3 from ∼40 to ∼120, suggesting efficient inward pebble drift and/or the formation of planetesimals. 
    more » « less
  5. Abstract We confirm TOI-4201 b as a transiting Jovian-mass planet orbiting an early M dwarf discovered by the Transiting Exoplanet Survey Satellite. Using ground-based photometry and precise radial velocities from NEID and the Planet Finder Spectrograph, we measure a planet mass of 2.59 0.06 + 0.07 MJ, making this one of the most massive planets transiting an M dwarf. The planet is ∼0.4% of the mass of its 0.63Mhost and may have a heavy-element mass comparable to the total dust mass contained in a typical class II disk. TOI-4201 b stretches our understanding of core accretion during the protoplanetary phase and the disk mass budget, necessitating giant planet formation to take place either much earlier in the disk lifetime or perhaps through alternative mechanisms like gravitational instability. 
    more » « less