skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dust Drift Timescales in Protoplanetary Disks at the Cusp of Gravitational Instability
Abstract Millimeter emitting dust grains have sizes that make them susceptible to drift in protoplanetary disks due to the difference between their orbital speed and that of the gas. The characteristic drift timescale depends on the surface density of the gas. By comparing disk radius measurements from Atacama Large Millimeter/submillimeter Array CO and continuum observations at millimeter wavelengths, the gas surface density profile and dust drift time can be self-consistently determined. We find that profiles which match the measured dust mass have very short drift timescales, an order of magnitude or more shorter than the stellar age, whereas profiles for disks that are on the cusp of gravitational instability, defined via the minimum value of the Toomre parameter, Q min 1 2 , have drift timescales comparable to the stellar lifetime. This holds for disks with masses of dust ≳5Macross a range of absolute ages from less than 1 Myr to over 10 Myr. The inferred disk masses scale with stellar mass as M disk M * / 5 Q min . This interpretation of the gas and dust disk sizes simultaneously solves two long standing issues regarding the dust lifetime and exoplanet mass budget, and suggests that we consider millimeter wavelength observations as a window into an underlying population of particles with a wide size distribution in secular evolution with a massive planetesimal disk.  more » « less
Award ID(s):
2050710 2107841
PAR ID:
10555005
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 50
Size(s):
Article No. 50
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inward drift of millimeter–centimeter sized pebbles in protoplanetary disks has become an important part of our current theories of planet formation and, more recently, planet composition as well. The gas-to-dust size ratio of protoplanetary disks can provide an important constraint on how pebbles have drifted inward, provided that observational effects, especially resolution, can be accounted for. Here we present a method for fitting beam-convolved models to integrated intensity maps of line emission using theastropyPython package and use it to fit12CO moment zero maps of 10 Lupus and 10 Upper Scorpius protoplanetary disks from the ALMA Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) Program, a sample of disks around M3-K6 stars that cover the  ∼1–6 Myr of gas disk evolution. From the unconvolved best fit models, we measure the gas disk size ( R CO , 90 % model ), which we combine with the dust disk size ( R dust , 90 % FRANK ) from continuum visibility fits from M. Vioque et al. to compute beam-corrected gas-to-dust size ratios. In our sample, we find gas-to-dust size ratios between  ∼1 and  ∼5.5, with a median value of 2.7 8 0.32 + 0.37 . Contrary to models of dust evolution that predict an increasing size ratio with time, we find that the younger disks in Lupus have similar (or even larger) median ratios ( 3.0 2 0.33 + 0.33 ) than the older disks in Upper Sco ( 2.4 6 0.38 + 0.53 ) . A possible explanation for this discrepancy is that pebble drift is halted in dust traps combined with truncation of the gas disk by external photoevaporation in Upper Sco, although survivorship bias could also play a role. 
    more » « less
  2. Abstract The evolution of the gas mass of planet-forming disks around young stars is crucial for our understanding of planet formation, yet it has proven hard to constrain observationally, due both to the difficulties of measuring gas masses and the lack of a homogeneous sample. Here we present a large grid of thermochemical models that we use to measure protoplanetary gas disk masses of AGE-PRO, the Atacama Large Millimeter/submillimeter Array survey of Gas Evolution in PROtoplanetary disks. AGE-PRO covers a sample of 30 disks around similar spectral type (M3-K6) stars with ages between 0.1 and 10 Myr. Our approach is to simultaneously fit observations of CO isotopologues and N2H+, a complementary molecule produced when CO freezes out. We find that the median gas mass of the three regions decreases over time, from 7 . 0 2.6 + 4.4 × 1 0 3 M in Ophiuchus (≲1 Myr) to 9 . 4 3.4 + 5.4 × 1 0 4 M for Lupus (∼1–3 Myr) and 6 . 8 2.8 + 5.1 × 1 0 4 M for Upper Sco (∼2–6 Myr), with ∼1 dex scatter in gas mass in each region. We note that the gas mass distributions for Lupus and Upper Sco look very similar, which could be due to survivorship bias for the latter. The median bulk CO abundance in the CO emitting layer is found to be a factor ∼10 lower than the interstellar medium value but does not significantly change between Lupus and Upper Sco. From Lupus to Upper Sco, the median gas-to-dust mass ratio increases by a factor ∼3 from ∼40 to ∼120, suggesting efficient inward pebble drift and/or the formation of planetesimals. 
    more » « less
  3. Abstract Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of 0.35 0.05 + 0.06 M and 0.34 ± 0.05Mfor the stellar components, a semimajor axis of 22 ( 1 + 2 ) au, and an eccentricity of 0.21 ( 0.03 + 0.04 ) . With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and12CO (J= 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation. 
    more » « less
  4. Abstract We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu L ar momentum, and Evolution ( SQuIGG L E ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, with M H 2 10 9 M. Given their high stellar masses, this mass limit corresponds to an average gas fraction of f H 2 M H 2 / M * 7 % or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, the SQuIGG L E galaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations. 
    more » « less
  5. Abstract We compare 500 pc scale, resolved observations of ionized and molecular gas for thez∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux ( Σ ̇ out ) and star formation rate surface density (ΣSFR), Σ ̇ out Σ SFR 1.06 ± 0.10 , and a strong correlation between Σ ̇ out and the gas depletion time, such that Σ ̇ out t dep 1.1 ± 0.06 . Moreover, we find these outflows are so-calledbreakoutoutflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest ΣSFRin IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies. 
    more » « less