UCBlocker: Unwanted Call Blocking Using Anonymous Authentication
More Like this
-
Storage of sensitive multi-dimensional arrays must be secure and efficient in storage and processing time. Searchable encryption allows one to trade between security and efficiency. Searchable encryption design focuses on building indexes, overlooking the crucial aspect of record retrieval. Gui et al. (PoPETS 2023) showed that understanding the security and efficiency of record retrieval is critical to understand the overall system. A common technique for improving security is partitioning data tuples into parts. When a tuple is requested, the entire relevant part is retrieved, hiding the tuple of interest. This work assesses tuple partitioning strategies in the dense data setting, considering parts that are random, 1-dimensional, and multi-dimensional. We consider synthetic datasets of 2,3 and 4 dimensions, with sizes extending up to 2M tuples. We compare security and efficiency across a variety of record retrieval methods. Our findings are: 1. For most configurations, multi-dimensional partitioning yields better efficiency and less leakage. 2. 1-dimensional partitioning outperforms multi-dimensional partitioning when the first (indexed) dimension is any size as long as the query is large in all other dimensions. 3. The leakage of 1-dimensional partitioning is reduced the most when using a bucketed ORAM (Demertiz et al., USENIX Security 2020).more » « less
-
Machine learning is being increasingly used by individuals, research institutions, and corporations. This has resulted in the surge of Machine Learning-as-a-Service (MLaaS) - cloud services that provide (a) tools and resources to learn the model, and (b) a user-friendly query interface to access the model. However, such MLaaS systems raise privacy concerns such as model extraction. In model extraction attacks, adversaries mali- ciously exploit the query interface to steal the model. More precisely, in a model extraction attack, a good approximation of a sensitive or propri- etary model held by the server is extracted (i.e. learned) by a dishonest user who interacts with the server only via the query interface. This attack was introduced by Tramèr et al. at the 2016 USENIX Security Symposium, where practical attacks for various models were shown. We believe that better understanding the efficacy of model extraction attacks is paramount to designing secure MLaaS systems. To that end, we take the first step by (a) formalizing model extraction and discussing possible defense strategies, and (b) drawing parallels between model extraction and established area of active learning. In particular, we show that re- cent advancements in the active learning domain can be used to imple- ment powerful model extraction attacks, and investigate possible defense strategies.more » « less
-
Machine learning is being increasingly used by individu- als, research institutions, and corporations. This has resulted in the surge of Machine Learning-as-a-Service (MLaaS) - cloud services that provide (a) tools and resources to learn the model, and (b) a user-friendly query interface to access the model. However, such MLaaS systems raise concerns such as model extraction. In model extraction attacks, adversaries maliciously exploit the query interface to steal the model. More precisely, in a model extraction attack, a good approxi- mation of a sensitive or proprietary model held by the server is extracted (i.e. learned) by a dishonest user who interacts with the server only via the query interface. This attack was introduced by Tramèr et al. at the 2016 USENIX Security Symposium, where practical attacks for various models were shown. We believe that better understanding the efficacy of model extraction attacks is paramount to designing secure MLaaS systems. To that end, we take the first step by (a) formalizing model extraction and discussing possible defense strategies, and (b) drawing parallels between model extraction and established area of active learning. In particular, we show that recent advancements in the active learning domain can be used to implement powerful model extraction attacks, and investigate possible defense strategies.more » « less
-
Tauman Kalai, Yael ; Smith, Adam D ; Wichs, Daniel (Ed.)Motivated by the desire to bridge the utility gap between local and trusted curator models of differential privacy for practical applications, we initiate the theoretical study of a hybrid model introduced by "Blender" [Avent et al., USENIX Security '17], in which differentially private protocols of n agents that work in the local-model are assisted by a differentially private curator that has access to the data of m additional users. We focus on the regime where m ≪ n and study the new capabilities of this (m,n)-hybrid model. We show that, despite the fact that the hybrid model adds no significant new capabilities for the basic task of simple hypothesis-testing, there are many other tasks (under a wide range of parameters) that can be solved in the hybrid model yet cannot be solved either by the curator or by the local-users separately. Moreover, we exhibit additional tasks where at least one round of interaction between the curator and the local-users is necessary - namely, no hybrid model protocol without such interaction can solve these tasks. Taken together, our results show that the combination of the local model with a small curator can become part of a promising toolkit for designing and implementing differential privacy.more » « less