Background.Safe sensory-selective local anesthetics would be a major advance in the management of acute and chronic pain. Here we describe the sensory-selective local anesthetic properties and the toxicity profile of a known metabolite of amino-amide local anesthetics,2',6'-pipecolylxylidine (PPX). Methods.PPX was synthesized and made into its hydrochloride salt. PPX or ropivacaine (ROP) were injected at the sciatic nerve or intrathecally in rats, who then underwent modified hotplate (sensory) testing and weight-bearing (motor) testing. Rats injected with PPX or ROP were assessed for clinical toxicity endpoints. Conduction blockade was studied with single-unit recordings in mice. Biocompatibility was assessed histologically. Results.In male rats, sciatic sensory and motor block from 15 mM ROP lasted ~150 min; sensory nerve block from 30 mM PPX lasted 67.4 ± 17.4 min without motor block. Addition of chemical permeation enhancers to 30 mM PPX abolished sensory selectivity. Intrathecal 15 mM ROP produced sensory and motor block lasting ~15 min; sensory block from 30 mM PPX lasted 24.8 ± 8.7 min without motor block; repeated injection caused continuous sensory-selective block. In female rats, sciatic nerve blocks with ROP were similar to blocks in males, while blocks with PPX were sensory-selective but higher PPX concentrations were required. Ex vivo, 1.5 mM ROP caused reversible block of Aδ and C-fibers; 15 mM PPX blocked Aδ- but not C-fibers. Systemic 39.0 ± 1.8 mg/kg ROP caused severe clinical toxicity; 75.3 ± 3.2 mg/kg PPX caused none. Tissue reaction to PPX was benign, comparable to that of ROP. Conclusions.PPX provides sensory-selective local and neuraxial anesthesia with a good safety profile. The sensory selectivity may be attributable to the particular hydrophilic-hydrophobic balance of PPX. 
                        more » 
                        « less   
                    
                            
                            A systematic study of injectable anesthetic agents in the brown anole lizard ( Anolis sagrei  )
                        
                    
    
            Anolis lizards have served as important research models in fields ranging from evolution and ecology to physiology and biomechanics. However, anoles are also emerging as important models for studies of embryo development and tissue regeneration. The increased use of anoles in the laboratory has produced a need to establish effective methods of anesthesia, both for routine veterinary procedures and for research procedures. Therefore, we tested the efficacy of different anesthetic treatments in adult female Anolis sagrei. Alfaxalone, dexmedetomidine, hydromorphone, ketamine and tribromoethanol were administered subcutaneously (SC), either alone or combined at varying doses in a total of 64 female anoles. Drug induction time, duration, anesthesia level and adverse effects were assessed. Differences in anesthesia level were observed depending on injection site and drug combination. Alfaxalone/dexmedetomidine and tribromoethanol/dexmedetomidine were the most effective drug combinations for inducing a surgical plane of anesthesia in anoles. Brown anoles injected SC with alfaxalone (30 mg/kg) plus dexmedetomidine (0.1 mg/kg) or with tribromoethanol (400 mg/kg) plus dexmedetomidine (0.1 mg/kg) experienced mean durations of surgical anesthesia levels of 31.2 ± 5.3 and 87.5 ± 19.8 min with full recovery after another 10.9 ± 2.9 and 46.2 ± 41.8 min, respectively. Hydromorphone given with alfaxalone/dexmedetomidine resulted in deep anesthesia with respiratory depression, while ketamine/hydromorphone/dexmedetomidine produced only light to moderate sedation. We determined that alfaxalone/dexmedetomidine or tribromoethanol/dexmedetomidine combinations were sufficient to maintain a lizard under general anesthesia for coeliotomy. This study represents a significant step towards understanding the effects of anesthetic agents in anole lizards and will benefit both veterinary care and research on these animals. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10525183
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Laboratory Animals
- Volume:
- 54
- Issue:
- 3
- ISSN:
- 0023-6772
- Format(s):
- Medium: X Size: p. 281-294
- Size(s):
- p. 281-294
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With decades of intensive study, Anolis lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as an emerging model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of Anolis positions them as a powerful model system in ecology and evolution for years to come. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
- 
            Unique characteristics of the naked mole-rat (NMR) have made it increasingly popular as a laboratory animal model. These rodents are used to study many fields of research including longevity and aging, cancer, circadian rhythm, pain, and metabolism. Currently, the analgesic dosing regimens used in the NMR mirror those used in other rodent species. However, there is no pharmacokinetic (PK) data supporting the use of injectable analgesics in the NMR. Therefore, we conducted two independent PK studies to evaluate two commonly used analgesics in the NMR; meloxicam (2 mg/kg SC) and buprenorphine (0.1 mg/kg SC). In each study, blood was collected at 8 time points after subcutaneous injection of meloxicam or buprenorphine (0 (pre-dose), 0.25, 0.5, 1, 2, 4, 8, and 24 hrs). Three NMRs were used per time point for a total of 24 animals per PK study. Plasma concentrations of meloxicam were highest between 0.5 hrs and 1 hr post-injection. Levels remained above the extrapolated dog and cat therapeutic threshold levels (390-911 ng/mL) for at least 24 hrs. Plasma concentrations of buprenorphine were highest between 0.25 and 0.5 hrs post-injection. Levels remained above the human therapeutic threshold (1 ng/mL) for up to 21 hrs. No skin reactions were seen in association with injection of either drug. In summary, this data supports dosing meloxicam (2 mg/kg SC) once every 24 hrs and buprenorphine (0.1 mg/kg SC) once every 8-12 hrs in the NMR. Further studies should be performed to evaluate the clinical efficacy of these drugs by correlating plasma concentrations with post-operative pain assessments.more » « less
- 
            Suckow, Mark (Ed.)Abstract Unique characteristics of the naked mole-rat (NMR) have made it increasingly popular as a laboratory animal model. These rodents are used to study many fields of research including longevity and aging, cancer, circadian rhythm, pain, and metabolism. Currently, the analgesic dosing regimens used in the NMR mirror those used in other rodent species. However, there is no pharmacokinetic (PK) data supporting the use of injectable analgesics in the NMR. Therefore, we conducted 2 independent PK studies to evaluate 2 commonly used analgesics in the NMR: meloxicam (2 mg/kg SC) and buprenorphine (0.1 mg/kg SC). In each study, blood was collected at 8 time points after subcutaneous injection of meloxicam or buprenorphine (0 [predose], 0.25, 0.5, 1, 2, 4, 8, and 24 h). Three NMRs were used per time point for a total of 24 animals per PK study. Plasma concentrations of meloxicam were highest between 0.5 and 1 h postinjection. Levels remained above the extrapolated dog and cat therapeutic threshold levels (390 to 911 ng/mL) for at least 24 h. Plasma concentrations of buprenorphine were highest between 0.25 and 0.5 h postinjection. Levels remained above the human therapeutic threshold (1 ng/mL) for up to 21 h. No skin reactions were seen in association with injection of either drug. In summary, these data support dosing meloxicam (2 mg/kg SC) once every 24 h and buprenorphine (0.1 mg/kg SC) once every 8 to 12 h in the NMR. Further studies should be performed to evaluate the clinical efficacy of these drugs by correlating plasma concentrations with postoperative pain assessments.more » « less
- 
            Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations. Most of the prior research on the diversification of Anolis morphology has focused on the post-cranium because of its significance towards subdivision of the arboreal habitat. But the remarkable diversity in head shape in anoles has not been as thoroughly investigated. It remains unknown whether the tempo or mode of head shape diversification changed as anoles diversified. We performed geometric morphometric analysis of skull shape across a sample of 12 Iguanian families (110 species), including anoles. Anolis lizards occupy a unique area and a wider region of morphological space compared to the 11 other families examined. We did not find a difference in the evolutionary rate of head shape diversification between anoles and their relatives. Rather, the extraordinary amount of skull diversity arose through a distinct mode of evolution; anoles moved into novel regions by relatively large morphological transitions across morphological space compared to their relatives. Our results demonstrate that traits not directly tied to the adaptive shift of a lineage into unique ecological spaces may undergo exceptional patterns of change as the clade diversifies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
