skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mineral paragenesis of early biotite veins at the Kuh-e Janja Cu-Au porphyry deposit, southeastern Iran: Importance of microtextural observations in studies constraining the relative timing of hypogene Cu mineralization
Abstract Veins consisting primarily of biotite are the earliest stockwork vein type recognized at the Kuh-e Janja Cu-Au porphyry deposit in southeastern Iran. These early biotite veins may contain quartz and minor amounts of sulfide minerals such as chalcopyrite and pyrite. Observations at the hand-specimen scale do not provide reliable constraints on the paragenetic relationships, as the early biotite veins have been repeatedly overprinted during the evolution of the magmatic-hydrothermal system. Microscopic investigations show that the sulfide minerals in the early biotite veins are texturally late, providing evidence that sulfide deposition did not occur at the high temperatures of biotite formation and potassic alteration of the host rocks. Chalcopyrite primarily occurs along hairline fractures that crosscut or refracture the earlier biotite veins. Biotite in contact with the chalcopyrite can be apparently unaltered or is replaced by chlorite, depending on the degree of wall-rock buffering of the magmatic-hydrothermal fluids that caused hypogene Cu mineralization. The findings add to the growing body of evidence that Cu mineralization in this deposit type occurs at temperatures close to the transition from ductile to brittle conditions (<450°C) following a drop in the pressure regime from lithostatic to hydrostatic conditions.  more » « less
Award ID(s):
2310920 1822146
PAR ID:
10525199
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Society of Economic Geologists
Date Published:
Journal Name:
Economic Geology
ISSN:
0361-0128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zuun Mod is a porphyry-type Mo-Cu deposit located in the Edren terrane in Southwest Mongolia. The deposit has estimated resources of 218 Mt with an average Mo grade of 0.057% and Cu grade of 0.069%, and significant amounts of Re. The deposit is characterized by multiple pulses of magmatism and exsolution of magmatic ore fluids and associated alteration and mineralization. The timing of these events and the tectonic environment were unconstrained, and the deposit’s origin remains controversial. Based on drill core and field examinations, four lithological units of the Bayanbulag intrusive complex are identified in the deposit area including quartz syenite, quartz monzonite, granodiorite, and granite. The majority of Mo mineralization at Zuun Mod occurs in sheeted and stockwork quartz veins that crosscut units of the Bayanbulag complex as well as disseminations within altered granitoids wherein the mineralized quartz veins occur with potassic and phyllic alteration selvages. Zircon U-Pb age dating for quartz monzonite and granodiorite defined the timing of magmatic events at 305.3 ± 3.6 Ma and 301.8 ± 2.7 Ma, respectively. Molybdenite Re-Os geochronology on grains from a quartz vein with potassic alteration selvage determined the age of Mo mineralization at 297 ± 4.8 Ma. Lithogeochemical data of intrusive units suggest the granitoid rocks show calc-alkaline to high-K calc-alkaline, I-type, and metaluminous to slightly peraluminous affinities that formed in a post-collisional setting and were likely sourced from subduction-modified lithosphere. Lithogeochemical signatures and the tectonic environment classify Zuun Mod into neither Climax nor Endako-types, but as a Mo-rich porphyry Cu deposit. 
    more » « less
  2. Abstract The Au-rich polymetallic massive sulfide orebodies of the Kassandra mining district belong to the intrusion-related carbonate-hosted replacement deposit class. Marble lenses contained within the Stratoni fault zone host the Madem Lakkos and Mavres Petres deposits at the eastern end of the fault system, where paragenetically early skarn and massive sulfide are spatially associated with late Oligocene aplitic and porphyritic dikes. Skarn transitions into predominant massive and banded replacement sulfide bodies, which are overprinted by a younger assemblage of boulangerite-bearing, quartz-rich sulfide and late quartz-rhodochrosite vein breccias. The latter style of mineralization is most abundant at the Piavitsa prospect at the western end of the exposed fault system. The sulfide orebodies at the Olympias deposit are hosted by marble in association with the Kassandra fault, where textural and mineralogical similarities to the sulfide bodies within the Stratoni fault zone suggest a genetic relationship. Estimated trapping temperatures and pressures based on fluid inclusion data indicate that carbonate replacement mineralization took place at depths less than about 5.9 km. Carbon and oxygen isotope patterns in carbonate from the Stratoni fault zone support isotopic exchange principally through fluid–wall-rock interaction, whereas decarbonation and fluid-rock exchange reactions were important at the Olympias deposit. Carbonate minerals associated with skarn and replacement sulfide throughout the district have isotopic compositions that are consistent with formation from a hydrothermal fluid of magmatic origin. Lower homogenization temperatures and salinities in the younger quartz-rich sulfide assemblage and quartz-rhodochrosite vein breccias, together with low δ18O values of gangue carbonate, suggest dilution of a primary magmatic fluid with meteoric water late in the evolution of the hydrothermal system in both the Olympias area and the Stratoni fault zone. The replacement sulfide orebodies in the district likely inherited their uniform Pb isotope composition from a late Oligocene igneous source and the isotopically heterogeneous metamorphic basement units. Metal distribution patterns at the scale of the Stratoni fault zone show diminishing Cu concentration with decreasing Pb/Zn and Ag/Au ratios from Madem Lakkos to Mavres Petres and the Piavitsa prospect in the west. The sulfide orebodies at the Olympias deposit exhibit elevated Cu values in the east with increasing Pb/Zn and Ag/Au ratios down-plunge to the south-southwest. Metal concentration and ratios support zoning related to temperature and solubility changes with increasing distance from a probable magmatic source. Structural and igneous relationships, together with fluid inclusion microthermometric and carbon-oxygen isotope data and metal distribution patterns, are supportive of a zoned hydrothermal system that exceeded 12 km along the Stratoni fault zone, sourced by an igneous intrusion to the southeast of the Madem Lakkos deposit. The Olympias replacement sulfide orebodies, associated with the Kassandra fault, resulted from a local hydrothermal system that was likely derived from a concealed igneous intrusion to the east of the deposit. 
    more » « less
  3. Iron oxide copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe oxides, and may contain Au, Ag, Co, rare earth elements (REEs), U, and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the hydrothermal unit and manto orebodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three types of magnetite: magnetite with inclusions (type I) is only found in the manto, is the richest in trace elements, and crystallized between 459° and 707°C; type Dark (D) has no visible inclusions and formed at around 543°C; and type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443°C. Temperatures were estimated using the Mg content in magnetite. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n = 9), an average δ18O ± 2σ value of 2.19 ± 0.45‰ (n = 9), and D’17O values that range between –0.075 and –0.047‰. Sulfide separates yielded δ65Cu values that range from –0.32 to –0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an iron oxide-apatite (IOA) style mineralization that was overprinted by a younger, structurally controlled IOCG event that formed the hydrothermal unit orebody. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude significant input from meteoric water and basinal brines. 
    more » « less
  4. Abstract Volcanogenic massive sulfide deposits may represent a significant future source of Te, which is a critical element important for the green energy transition. Tellurium is enriched in these settings by up to 10,000 times over its crustal abundance, indicating that fluids in sea-floor hydrothermal systems may transport and precipitate Te. The major element composition of these hydrothermal fluids is controlled by fluid-rock interaction and is well documented based on experimental, modeling, and natural studies; however, controls on Te mobility are still unknown. To better understand Te enrichment in this deposit type, numerical simulations of the mafic-hosted Vienna Woods and the felsic-hosted Fenway sea-floor vents in the Manus basin were performed to predict Te mobility in modern sea-floor hydrothermal vent fluids and Te deposition during sulfide formation. These simulations demonstrate that the mobility of Te in sea-floor hydrothermal systems is primarily controlled by fluid redox and temperature. Tellurium mobility is low in reduced hydrothermal fluids, whereas mobility of this metal is high at oxidized conditions at temperatures above 250°C. Numerical simulations of the reduced vent fluids of the mafic-hosted Vienna Woods site at the back-arc spreading center in the Manus basin yielded Te concentrations as low as 0.2 ppt. In contrast, the more oxidized model fluids of the felsic-hosted Fenway site located on Pual Ridge in the eastern Manus basin contain 50 ppt Te. The models suggest that Te enrichment in these systems reflects rock-buffer control on oxygen fugacity, rather than an enriched source of Te. In fact, the mafic volcanic rocks probably contain more Te than felsic volcanic rocks. The association of elevated Te contents in the felsic-hosted Fenway system likely reflects magmatic volatile input resulting in lower pH and higher Eh of the fluids. More generally, analysis of sulfide samples collected from modern sea-floor vent sites confirms that redox buffering by the host rocks is a first-order control on Te mobility in hydrothermal fluids. The Te content of sulfides from sea-floor hydrothermal vents hosted by basalt-dominated host rocks is generally lower than those of sulfides from vents located in felsic volcanic successions. Literature review suggests that this relationship also holds true for volcanogenic massive sulfides hosted in ancient volcanic successions. Results from reactive transport simulations further suggest that Te deposition during sulfide formation is primarily temperature controlled. Modeling shows that tellurium minerals are coprecipitated with other sulfides at high temperatures (275°–350°C), whereas Te deposition is distinctly lower at intermediate (150°–275°C) and low temperatures (100°–150°C). These predictions agree with geochemical analyses of sea-floor sulfides as Te broadly correlates positively with Cu and Au enrichment in felsic-hosted systems. The findings of this study provide an important baseline for future studies on the behavior of Te in hydrothermal systems and the processes controlling enrichment of this critical mineral in polymetallic sulfide ores. 
    more » « less
  5. Porphyry Cu ± Mo ± Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the subject of some debate. Here, we systematically estimated the P-T-fO2 conditions and H2O-S-Cl contents for dioritic to granodioritic source magmas for porphyry and skarn Cu ± Au (150–135 Ma) and IOA deposits (~130 Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transition from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma and concomitant crustal extension and steepening of the regional geothermal gradient. Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu ± Au and IOA deposits had comparable predegassed S concentrations (~0.13 ± 0.06 wt % vs. ~0.16 ± 0.09 wt % on average), but that IOA-related melts contained higher predegassed Cl/H2O ratios (~0.11 ± 0.03 vs. ~0.04 ± 0.03 for porphyry- and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fO2 estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ) redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (ΔFMQ +0.7 to +2.5) at 950° to 800°C and decreased to ΔFMQ +1 at 700°C owing to fractionation of Fe2+-rich minerals and subsequent S degassing, respectively. In contrast, the magmatic fO2 values for the IOA-related source magmas varied significantly from ΔFMQ –1.5 to ΔFMQ +2.5 but generally show an increasing trend with cooling from 970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe2+-rich minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-related source magmas played a determinant role in their formation. We propose that the porphyry and skarn Cu ± Au deposits in the Middle-Lower Yangtze River metallogenic belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional setting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as FeCl2. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H2O, and Cu with Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures. 
    more » « less