skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2310920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Geologic hydrogen has emerged as a primary energy source, drawing growing interest from the scientific community and the energy sector. One of the primary geochemical mechanisms for natural hydrogen generation is serpentinization, which is the hydration of mafic and ultramafic rocks. The United Arab Emirates (UAE) is home to one of the largest ophiolite blocks in the world, making it a promising area for geologic hydrogen exploration. In this study, we apply magnetotelluric (MT) phase tensor analysis to detect electrical anisotropy associated with serpentinization in the mantle peridotite sequence. The alignment of olivine crystals and hydrous minerals such as serpentine impart electrical anisotropy to these rocks. Current approaches for detecting serpentinization have primarily focused on changes in bulk physical properties, often overlooking the directional dependencies and complexities introduced by anisotropy. In this research, we introduce a novel geophysical framework based on the phase tensors, to identify serpentinized zones within source rocks in geologic hydrogen systems and possibly identify potential hydrogen-bearing zones. Using MT field data from the UAE, we demonstrate that phase tensor analysis effectively identifies anisotropic conductivity zones associated with serpentinization. The MT phase tensor approach we propose can support assessment of geologic hydrogen generation and its lifecycle. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Abstract Veins consisting primarily of biotite are the earliest stockwork vein type recognized at the Kuh-e Janja Cu-Au porphyry deposit in southeastern Iran. These early biotite veins may contain quartz and minor amounts of sulfide minerals such as chalcopyrite and pyrite. Observations at the hand-specimen scale do not provide reliable constraints on the paragenetic relationships, as the early biotite veins have been repeatedly overprinted during the evolution of the magmatic-hydrothermal system. Microscopic investigations show that the sulfide minerals in the early biotite veins are texturally late, providing evidence that sulfide deposition did not occur at the high temperatures of biotite formation and potassic alteration of the host rocks. Chalcopyrite primarily occurs along hairline fractures that crosscut or refracture the earlier biotite veins. Biotite in contact with the chalcopyrite can be apparently unaltered or is replaced by chlorite, depending on the degree of wall-rock buffering of the magmatic-hydrothermal fluids that caused hypogene Cu mineralization. The findings add to the growing body of evidence that Cu mineralization in this deposit type occurs at temperatures close to the transition from ductile to brittle conditions (<450°C) following a drop in the pressure regime from lithostatic to hydrostatic conditions. 
    more » « less
  3. Abstract Transition to cleaner energy sources is crucial for reducing carbon emissions to zero. Among these new clean energy types, there is a growing awareness of the potential for naturally occurring geologic hydrogen (H2) as a primary energy resource that can be readily introduced into the existing energy supply. It is anticipated that geophysics will play a critical role in such endeavors. There are two major different types of geologic H2. One is natural H2 (referred to as gold H2), which is primarily accumulating naturally in reservoirs in certain geological setting; and the other is stimulated H2 (referred to as orange H2), which is produced artificially from source rocks through chemical and physical stimulations. We will first introduce geophysics in geologic H2 in comparison and contrast to the scenarios of blue and green H2. We will then discuss the significance of geophysics in both natural H2 and stimulated H2 in term of both exploration and monitoring tools. Comparing and contrasting the current geophysical tools in hydrocarbon exploration and production, we envision the innovative geophysical technologies and strategies for geologic H2 resources based on our current understanding of both natural and stimulated geologic hydrogen systems. The strategies for H2 exploration will involve a shift from reservoir- to source rock-centered approaches. Last, we believe that the geophysical methods including integration of multi-geophysics, efficient data acquisition, and machine learning in geologic H2 could be potentially provide sufficient new directions and significant opportunities to pursue research for the next one or two decades. 
    more » « less
  4. Abstract Regional stream sediment surveys are an important exploration tool used in the search for concealed or partially concealed porphyry deposits. It is shown here that quartz contained in the coarse fraction of stream sediments can be used as an indicator mineral to supplement geochemical analyses conducted on the fine fraction, such as the measurement of the bulk cyanide leach extractable gold content. A method is proposed that allows separation of quartz grains from the coarse rejects of stream sediment samples to prepare grain mounts for petrographic analysis. Based on optical cathodoluminescence microscopy and fluid inclusion petrography, the number of porphyry quartz grains in each grain mount is then identified. Case studies conducted at Vert de Gris in Haiti and Hides Creek in Papua New Guinea show that porphyry quartz grains could be confidently identified in sediments in the catchment areas of both porphyries. Because the cost of microscopic analysis of quartz is small compared to the expense of sampling and geochemical analysis, the developed technique could be routinely used in large greenfield exploration programs. It is envisaged here that petrographic analysis of quartz grains can contribute valuable information for prioritization of targets defined based on their geochemical signatures. 
    more » « less
  5. Abstract Volcanogenic massive sulfide deposits may represent a significant future source of Te, which is a critical element important for the green energy transition. Tellurium is enriched in these settings by up to 10,000 times over its crustal abundance, indicating that fluids in sea-floor hydrothermal systems may transport and precipitate Te. The major element composition of these hydrothermal fluids is controlled by fluid-rock interaction and is well documented based on experimental, modeling, and natural studies; however, controls on Te mobility are still unknown. To better understand Te enrichment in this deposit type, numerical simulations of the mafic-hosted Vienna Woods and the felsic-hosted Fenway sea-floor vents in the Manus basin were performed to predict Te mobility in modern sea-floor hydrothermal vent fluids and Te deposition during sulfide formation. These simulations demonstrate that the mobility of Te in sea-floor hydrothermal systems is primarily controlled by fluid redox and temperature. Tellurium mobility is low in reduced hydrothermal fluids, whereas mobility of this metal is high at oxidized conditions at temperatures above 250°C. Numerical simulations of the reduced vent fluids of the mafic-hosted Vienna Woods site at the back-arc spreading center in the Manus basin yielded Te concentrations as low as 0.2 ppt. In contrast, the more oxidized model fluids of the felsic-hosted Fenway site located on Pual Ridge in the eastern Manus basin contain 50 ppt Te. The models suggest that Te enrichment in these systems reflects rock-buffer control on oxygen fugacity, rather than an enriched source of Te. In fact, the mafic volcanic rocks probably contain more Te than felsic volcanic rocks. The association of elevated Te contents in the felsic-hosted Fenway system likely reflects magmatic volatile input resulting in lower pH and higher Eh of the fluids. More generally, analysis of sulfide samples collected from modern sea-floor vent sites confirms that redox buffering by the host rocks is a first-order control on Te mobility in hydrothermal fluids. The Te content of sulfides from sea-floor hydrothermal vents hosted by basalt-dominated host rocks is generally lower than those of sulfides from vents located in felsic volcanic successions. Literature review suggests that this relationship also holds true for volcanogenic massive sulfides hosted in ancient volcanic successions. Results from reactive transport simulations further suggest that Te deposition during sulfide formation is primarily temperature controlled. Modeling shows that tellurium minerals are coprecipitated with other sulfides at high temperatures (275°–350°C), whereas Te deposition is distinctly lower at intermediate (150°–275°C) and low temperatures (100°–150°C). These predictions agree with geochemical analyses of sea-floor sulfides as Te broadly correlates positively with Cu and Au enrichment in felsic-hosted systems. The findings of this study provide an important baseline for future studies on the behavior of Te in hydrothermal systems and the processes controlling enrichment of this critical mineral in polymetallic sulfide ores. 
    more » « less
  6. Abstract The San Albino deposit is an orogenic gold occurrence hosted by a low-angle thrust that is the site of a new open-pit mine in northern Nicaragua. The deposit is hosted in greenschist facies rocks of the Jurassic metasedimentary Neuvo Segovia Formation. The schist was uplifted and exposed during arc accretion and Cretaceous thin-skin deformation, forming the NE-striking Colon fold-and-thrust belt. Deformation included emplacement of the 119 to 113 Ma NE-trending Dipilto batholith into the regionally metamorphosed clastic rocks about 5 km northwest of the San Albino deposit. Mineralization is dominated by three laminated quartz vein systems (i.e., San Albino, Naranjo, Arras) that broadly follow shallowly dipping (approx. 30°) carbonaceous shears roughly concordant to schistosity along the limbs of a doubly plunging antiform. The three main parallel shears are each separated by about 90 m and individually reach a maximum thickness of about 8 m. Maximum thickness of ore zones is where post-ore local folding and reverse motion along the shallow shears has duplicated the laminated low-angle gold-bearing veins (D2 and early D3). Additional gold was added to the veins, with abundant sulfides, during a subsequent brecciation event of the early formed quartz veins that accompanied progressive thrusting (late D3). This predated boudinage of the veins during continued compression and thrust loading (D4); high gold grades are particularly notable along pyrite- and arsenopyrite-bearing stylolites formed during D4 pressure solution. The D2 to D3 gold event is likely coeval with Albian uplift of the Dipilto batholith and with back thrusting in the schist aided by the stress inhomogeneities provided by the igneous complex. Low-angle thrust-controlled orogenic gold deposits may represent world-class exploration targets because of their large linear footprints, although they are traditionally looked at as less favorable exploration targets relative to gold systems developed more commonly along high-angle reverse faults. Our case study of the San Albino deposit shows that although low-angle deposits are not inherently misoriented for failure like the more common subvertical reverse fault-related deposits, they may be sites of significant pressure buildup due to hydrothermal mineral precipitation during initial water-rock interaction or slight temperature decreases along the low-angle flow path. Resulting fluid cycling may lead to thick laminated vein development, such as seen at San Albino, where especially high-grade zones may be associated with local steepening and/or dilational zones within the broader, low-angle vein-hosting shear system. 
    more » « less
  7. Free, publicly-accessible full text available December 1, 2026
  8. Free, publicly-accessible full text available December 1, 2026
  9. Free, publicly-accessible full text available October 1, 2026
  10. Free, publicly-accessible full text available September 29, 2026