Millimeter wave (mmWave) access networks have the potential to meet the high-throughput and low-latency needs of immersive applications. However, due to the highly directional nature of the mmWave beams and their susceptibility to beam misalignment and blockage resulting from user movements and rotations, the associated mmWave links are vulnerable to large channel fluctuations. These fluctuations result in disproportion- ately adverse effects on performance of transport layer protocols such as Transmission Control Protocol (TCP). To overcome this challenge, we propose a network layer solution, COded Taking And Giving (COTAG) scheme to sustain low-latency and high- throughput end-to-end TCP performance in dually connected networks. In particular, COTAG creates network encoded packets at the network gateway and each access point (AP) aiming to adaptively take the spare bandwidth on each link for transmis- sion. Further, if one link bandwidth drops due to user movements, COTAG actively abandons the transmission opportunity by conditionally dropping packets. Consequently, COTAG actively adapts to link quality changes in mmWave access network and enhances the TCP performance without jeopardizing the latency of immersive content delivery. To evaluate the effectiveness of the proposed COTAG, we conduct experiments using off-the- shelf APs and network simulations. The evaluation results show that COTAG improves end-to-end TCP performance significantly on both throughput and latency. 
                        more » 
                        « less   
                    
                            
                            MIA: A Transport-Layer Plugin for Immersive Applications in Millimeter Wave Access Networks
                        
                    
    
            The highly directional nature of the millimeter wave (mmWave) beams pose several challenges in using that spectrum for meeting the communication needs of immersive applications. In particular, the mmWave beams are susceptible to misalignments and blockages caused by user movements. As a result, mmWave channels are vulnerable to large fluctuations in quality, which in turn, cause disproportionate degradation in end-to-end performance of Transmission Control Protocol (TCP) based applications. In this paper, we propose a reinforcement learning (RL) integrated transport-layer plugin, Millimeter wave based Immersive Agent (MIA), for immersive content delivery over the mmWave link. MIA uses the RL model to predict mmWave link bandwidth based on the real-time measurement. Then, MIA cooperates with TCP’s congestion control scheme to adapt the sending rate in accordance with the predictions of the mmWave bandwidth. To evaluate the effectiveness of the proposed MIA, we conduct experiments using a mmWave augmented immersive testbed and network simulations. The evaluation results show that MIA improves end-to-end immersive performance significantly on both throughput and latency. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1703389
- PAR ID:
- 10525302
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-3414-2
- Page Range / eLocation ID:
- 1 to 10
- Subject(s) / Keyword(s):
- Adaptation models Fluctuations Protocols Systems architecture Bandwidth Reinforcement learning Predictive models mmWave immersive applications bandwidth prediction reinforcement learning TCP
- Format(s):
- Medium: X
- Location:
- New York City, NY, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper presents the results of motion-tracking synchronized millimeter wave (mmWave) link bandwidth fluctuations while a user is engaged in immersive augmented/virtual reality applications. Our system, called MITRAS, supports ex- tensive exploration of human-induced impacts on mmWave link bandwidth during immersive experience. MITRAS adopts the packet train measurement application to track link bandwidth fluctuations. Meanwhile, the user movements are tracked using an Oculus Quest 2 headset. Through investigating the impacts of human movements on link bandwidth fluctuations, we further propose a link state prediction model to shed light on higher layer protocol design for immersive applications over mmWave links.more » « less
- 
            Communication over large-bandwidth millimeter wave (mmWave) spectrum bands can provide high data rate, through utilizing highgain beamforming vectors (briefly, beams). Real-time tracking of such beams, which is needed for supporting mobile users, can be accomplished through developing machine learning (ML) models. While computer simulations were used to show the success of such ML models, experimental results are still limited. Consequently in this paper, we verify the effectiveness of mmWave beam tracking over the open-source COSMOS testbed. We particularly utilize a multi-armed bandit (MAB) scheme, which follows reinforcement learning (RL) approach. In our MAB-based beam tracking model, the beam selection is modeled as an action, while the reward of the algorithm is modeled through the link throughput. Experimental results, conducted over the 60-GHz COSMOS-based mobile platform, show that the MAB-based beam tracking learning model can achieve almost 92% throughput compared to the Genie-aided beams after a few learning samples.more » « less
- 
            There is much interest in integrating millimeter wave radios (mmWave) into wireless LANs and 5G cellular networks to benefit from their multi-GHz of available spectrum. Yet, unlike existing technologies, e.g., WiFi, mmWave radios require highly directional antennas. Since the antennas have pencil-beams, the transmitter and receiver need to align their beams before they can communicate. Existing systems scan the space to find the best alignment. Such a process has been shown to introduce up to seconds of delay and is unsuitable for wireless networks where an access point has to quickly switch between users and accommodate mobile clients. This paper presents Agile-Link, a new protocol that can find the best mmWave beam alignment without scanning the space. Given all possible directions for setting the antenna beam, Agile-Link provably finds the optimal direction in logarithmic number of measurements. Further, Agile-Link works within the existing 802.11ad standard for mmWave LAN, and can support both clients and access points. We have implemented Agile-Link in a mmWave radio and evaluated it empirically. Our results show that it reduces beam alignment delay by orders of magnitude. In particular, for highly directional mmWave devices operating under 802.11ad, the delay drops from over a second to 2.5 ms.more » « less
- 
            Beamforming techniques are considered as essential parts to compensate severe path losses in millimeter-wave (mmWave) communications. In particular, these techniques adopt large antenna arrays and formulate narrow beams to obtain satisfactory received powers. However, performing accurate beam alignment over narrow beams for efficient link configuration by traditional standard defined beam selection approaches, which mainly rely on channel state information and beam sweeping through exhaustive searching, imposes computational and communications overheads. And, such resulting overheads limit their potential use in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications involving highly dynamic scenarios. In comparison, utilizing out-of-band contextual information, such as sensing data obtained from sensor devices, provides a better alternative to reduce overheads. This paper presents a deep learning-based solution for utilizing the multi-modality sensing data for predicting the optimal beams having sufficient mmWave received powers so that the best V2I and V2V line-of-sight links can be ensured proactively. The proposed solution has been tested on real-world measured mmWave sensing and communication data, and the results show that it can achieve up to 98.19% accuracies while predicting top-13 beams. Correspondingly, when compared to existing been sweeping approach, the beam sweeping searching space and time overheads are greatly shortened roughly by 79.67% and 91.89%, respectively which confirm a promising solution for beamforming in mmWave enabled communications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    