skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network Synthetic Interventions: A Causal Framework for Panel Data Under Network Interference
We propose a generalization of the synthetic controls and synthetic interventions methodology to incorporate network interference. We consider the estimation of unit-specific potential outcomes from panel data in the presence of spillover across units and unobserved confounding. Key to our approach is a novel latent factor model that takes into account network interference and generalizes the factor models typically used in panel data settings. We propose an estimator, Network Synthetic Interventions (NSI), and show that it consistently estimates the mean outcomes for a unit under an arbitrary set of counterfactual treatments for the network. We further establish that the estimator is asymptotically normal. We furnish two validity tests for whether the NSI estimator reliably generalizes to produce accurate counterfactual estimates. We provide a novel graph-based experiment design that guarantees the NSI estimator produces accurate counterfactual estimates, and also analyze the sample complexity of the proposed design. We conclude with simulations that corroborate our theoretical findings.  more » « less
Award ID(s):
2022448
PAR ID:
10525305
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://arxiv.org/pdf/2210.11355
Date Published:
Format(s):
Medium: X
Institution:
Massachusetts Institute of Technology
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-agent dynamical systems refer to scenarios where multiple units (aka agents) interact with each other and evolve collectively over time. For instance, people’s health conditions are mutually influenced. Receiving vaccinations not only strengthens the longterm health status of one unit but also provides protection for those in their immediate surroundings. To make informed decisions in multi-agent dynamical systems, such as determining the optimal vaccine distribution plan, it is essential for decision-makers to estimate the continuous-time counterfactual outcomes. However, existing studies of causal inference over time rely on the assumption that units are mutually independent, which is not valid for multi-agent dynamical systems. In this paper, we aim to bridge this gap and study how to estimate counterfactual outcomes in multi-agent dynamical systems. Causal inference in a multi-agent dynamical system has unique challenges: 1) Confounders are timevarying and are present in both individual unit covariates and those of other units; 2) Units are affected by not only their own but also others’ treatments; 3) The treatments are naturally dynamic, such as receiving vaccines and boosters in a seasonal manner. To this end, we model a multi-agent dynamical system as a graph and propose a novel model called CF-GODE (CounterFactual Graph Ordinary Differential Equations). CF-GODE is a causal model that estimates continuous-time counterfactual outcomes in the presence of inter-dependencies between units. To facilitate continuous-time estimation,we propose Treatment-Induced GraphODE, a novel ordinary differential equation based on graph neural networks (GNNs), which can incorporate dynamical treatments as additional inputs to predict potential outcomes over time. To remove confounding bias, we propose two domain adversarial learning based objectives that learn balanced continuous representation trajectories, which are not predictive of treatments and interference. We further provide theoretical justification to prove their effectiveness. Experiments on two semi-synthetic datasets confirm that CF-GODE outperforms baselines on counterfactual estimation. We also provide extensive analyses to understand how our model works. 
    more » « less
  2. A key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding. Here, we study this question using a segregated graph (Shpitser, 2015) representation of these mechanisms, and examine how uncertainty about the true underlying mechanism impacts downstream computation of network causal effects, particularly under full interference---settings where we only have a single realization of a network and each unit may depend on any other unit in the network. Under certain assumptions about asymptotic growth of the network, we derive likelihood ratio tests that can be used to identify whether different sets of variables---confounders, treatments, and outcomes---across units exhibit dependence due to contagion or latent confounding. We then propose network causal effect estimation strategies that provide unbiased and consistent estimates if the dependence mechanisms are either known or correctly inferred using our proposed tests. Together, the proposed methods allow network effect estimation in a wider range of full interference scenarios that have not been considered in prior work. We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks. 
    more » « less
  3. Abstract Standard estimators of the global average treatment effect can be biased in the presence of interference. This paper proposes regression adjustment estimators for removing bias due to interference in Bernoulli randomized experiments. We use a fitted model to predict the counterfactual outcomes of global control and global treatment. Our work differs from standard regression adjustments in that the adjustment variables are constructed from functions of the treatment assignment vector, and that we allow the researcher to use a collection of any functions correlated with the response, turning the problem of detecting interference into a feature engineering problem. We characterize the distribution of the proposed estimator in a linear model setting and connect the results to the standard theory of regression adjustments under SUTVA. We then propose an estimator that allows for flexible machine learning estimators to be used for fitting a nonlinear interference functional form. We propose conducting statistical inference via bootstrap and resampling methods, which allow us to sidestep the complicated dependences implied by interference and instead rely on empirical covariance structures. Such variance estimation relies on an exogeneity assumption akin to the standard unconfoundedness assumption invoked in observational studies. In simulation experiments, our methods are better at debiasing estimates than existing inverse propensity weighted estimators based on neighborhood exposure modeling. We use our method to reanalyze an experiment concerning weather insurance adoption conducted on a collection of villages in rural China. 
    more » « less
  4. Summary For decades, $ N $-of-1 experiments, where a unit serves as its own control and treatment in different time windows, have been used in certain medical contexts. However, due to effects that accumulate over long time windows and interventions that have complex evolution, a lack of robust inference tools has limited the widespread applicability of such $ N $-of-1 designs. This work combines techniques from experimental design in causal inference and system identification from control theory to provide such an inference framework. We derive a model of the dynamic interference effect that arises in linear time-invariant dynamical systems. We show that a family of causal estimands analogous to those studied in potential outcomes are estimable via a standard estimator derived from the method of moments. We derive formulae for higher moments of this estimator and describe conditions under which $ N $-of-1 designs may provide faster ways to estimate the effects of interventions in dynamical systems. We also provide conditions under which our estimator is asymptotically normal and derive valid confidence intervals for this setting. 
    more » « less
  5. Randomized experiments are widely used to estimate causal effects across many domains. However, classical causal inference approaches rely on independence assumptions that are violated by network interference, when the treatment of one individual influences the outcomes of others. All existing approaches require at least approximate knowledge of the network, which may be unavailable or costly to collect. We consider the task of estimating the total treatment effect (TTE), the average difference between the outcomes when the whole population is treated versus when the whole population is untreated. By leveraging a staggered rollout design, in which treatment is incrementally given to random subsets of individuals, we derive unbiased estimators for TTE that do not rely on any prior structural knowledge of the network, as long as the network interference effects are constrained to low-degree interactions among neighbors of an individual. We derive bounds on the variance of the estimators, and we show in experiments that our estimator performs well against baselines on simulated data. Central to our theoretical contribution is a connection between staggered rollout observations and polynomial extrapolation. 
    more » « less