skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Evidence Contraction Issue in Deep Evidential Regression: Discussion and Solution
Deep Evidential Regression (DER) places a prior on the original Gaussian likelihood and treats learning as an evidence acquisition process to quantify uncertainty. For the validity of the evidence theory, DER requires specialized activation functions to ensure that the prior parameters remain non-negative. However, such constraints will trigger evidence contraction, causing sub-optimal performance. In this paper, we analyse DER theoretically, revealing the intrinsic limitations for sub-optimal performance: the non-negativity constraints on the Normal Inverse-Gamma (NIG) prior parameter trigger the evidence contraction under the specialized activation function, which hinders the optimization of DER performance. On this basis, we design a Non-saturating Uncertainty Regularization term, which effectively ensures that the performance is further optimized in the right direction. Experiments on real-world datasets show that our proposed approach improves the performance of DER while maintaining the ability to quantify uncertainty.  more » « less
Award ID(s):
2421839
PAR ID:
10525351
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
19
ISSN:
2159-5399
Page Range / eLocation ID:
21726 to 21734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimation of muscle forces during motion involves solving an indeterminate problem (more unknown muscle forces than joint moment constraints), frequently via optimization methods. When the dynamics of muscle activation and contraction are modeled for consistency with muscle physiology, the resulting optimization problem is dynamic and challenging to solve. This study sought to identify a robust and computationally efficient formulation for solving these dynamic optimization problems using direct collocation optimal control methods. Four problem formulations were investigated for walking based on both a two and three dimensional model. Formulations differed in the use of either an explicit or implicit representation of contraction dynamics with either muscle length or tendon force as a state variable. The implicit representations introduced additional controls defined as the time derivatives of the states, allowing the nonlinear equations describing contraction dynamics to be imposed as algebraic path constraints, simplifying their evaluation. Problem formulation affected computational speed and robustness to the initial guess. The formulation that used explicit contraction dynamics with muscle length as a state failed to converge in most cases. In contrast, the two formulations that used implicit contraction dynamics converged to an optimal solution in all cases for all initial guesses, with tendon force as a state generally being the fastest. Future work should focus on comparing the present approach to other approaches for computing muscle forces. The present approach lacks some of the major limitations of established methods such as static optimization and computed muscle control while remaining computationally efficient. 
    more » « less
  2. Recent works have demonstrated the vulnerability of Deep Reinforcement Learning (DRL) algorithms against training-time, backdoor poisoning attacks. The objectives of these attacks are twofold: induce pre-determined, adversarial behavior in the agent upon observing a fixed trigger during deployment while allowing the agent to solve its intended task during training. Prior attacks assume arbitrary control over the agent's rewards, inducing values far outside the environment's natural constraints. This results in brittle attacks that fail once the proper reward constraints are enforced. Thus, in this work we propose a new class of backdoor attacks against DRL which are the first to achieve state of the art performance under strict reward constraints. These ``inception'' attacks manipulate the agent's training data -- inserting the trigger into prior observations and replacing high return actions with those of the targeted adversarial behavior. We formally define these attacks and prove they achieve both adversarial objectives against arbitrary Markov Decision Processes (MDP). Using this framework we devise an online inception attack which achieves an 100% attack success rate on multiple environments under constrained rewards while minimally impacting the agent's task performance. 
    more » « less
  3. Abstract The fossilized birth–death (FBD) process provides an ideal model for inferring phylogenies from both extant and fossil taxa. Using this approach, fossils are directly integrated into the tree, leading to a statistically coherent prior on divergence times. Since fossils are typically not associated with molecular sequences, additional information is required to place fossils in the tree. We use simulations to evaluate two different approaches to handling fossil placement in FBD analyses: using topological constraints, where the user specifies monophyletic clades based on established taxonomy, or using total‐evidence analyses, which use a morphological data matrix in addition to the molecular alignment. We also explore how rate variation in fossil recovery or diversification rates impacts these approaches. We find that the extant topology is well recovered under all methods of fossil placement. Divergence times are similarly well recovered across all methods, with the exception of constraints which contain errors. We see similar patterns in datasets which include rate variation, however, relative errors in extant divergence times increase when more variation is included in the dataset, for all approaches using topological constraints, and particularly for constraints with errors. Finally, we show that trees recovered under the FBD model are more accurate than those estimated using non‐time calibrated inference. Overall, we show that both fossil placement approaches are reliable even when including uncertainty. Our results underscore the importance of core taxonomic research, including morphological data collection and species descriptions, irrespective of the approach to handling phylogenetic uncertainty using the FBD process. 
    more » « less
  4. Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors. 
    more » « less
  5. The Evidential Regression Network (ERN) represents a novel approach that integrates deep learning with Dempster-Shafer's theory to predict a target and quantify the associated uncertainty. Guided by the underlying theory, specific activation functions must be employed to enforce non-negative values, which is a constraint that compromises model performance by limiting its ability to learn from all samples. This paper provides a theoretical analysis of this limitation and introduces an improvement to overcome it. Initially, we define the region where the models can't effectively learn from the samples. Following this, we thoroughly analyze the ERN and investigate this constraint. Leveraging the insights from our analysis, we address the limitation by introducing a novel regularization term that empowers the ERN to learn from the whole training set. Our extensive experiments substantiate our theoretical findings and demonstrate the effectiveness of the proposed solution. 
    more » « less