We discuss a natural extension of Gilles Pisier’s approach to the study of measure concentration, isoperimetry, and Poincaré-type inequalities. This approach allows one to explore counterparts of various results about Gaussian measures in the class of rotationally invariant probability distributions on Euclidean spaces, including multidimensional Cauchy measures.
more »
« less
The Brownian transport map
Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.
more »
« less
- Award ID(s):
- 2002022
- PAR ID:
- 10539913
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Probability Theory and Related Fields
- ISSN:
- 0178-8051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We explore upper bounds on Kantorovich transport distances between probability measures on the Euclidean spaces in terms of their Fourier-Stieltjes transforms, with focus on non-Euclidean metrics. The results are illustrated on empirical measures in the optimal matching problem on the real line.more » « less
-
Abstract Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of optimal transport maps. The autoregressive transport models that we introduce here are based on regressing optimal transport maps on each other, where predictors can be transport maps from an overall barycenter to a current distribution or transport maps between past consecutive distributions of the distributional time series. Autoregressive transport models and their associated distributional regression models specify the link between predictor and response transport maps by moving along geodesics in Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random functions. Journal of Applied Probability 41, 425–436)], using properties of iterated random functions. We also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In addition to simulations, the proposed models are illustrated with distributional time series of house prices across U.S. counties and annual summer temperature distributions.more » « less
-
Abstract We propose a new approach to deriving quantitative mean field approximations for any probability measure $$P$$ on $$\mathbb {R}^{n}$$ with density proportional to $$e^{f(x)}$$, for $$f$$ strongly concave. We bound the mean field approximation for the log partition function $$\log \int e^{f(x)}dx$$ in terms of $$\sum _{i \neq j}\mathbb {E}_{Q^{*}}|\partial _{ij}f|^{2}$$, for a semi-explicit probability measure $$Q^{*}$$ characterized as the unique mean field optimizer, or equivalently as the minimizer of the relative entropy $$H(\cdot \,|\,P)$$ over product measures. This notably does not involve metric-entropy or gradient-complexity concepts which are common in prior work on nonlinear large deviations. Three implications are discussed, in the contexts of continuous Gibbs measures on large graphs, high-dimensional Bayesian linear regression, and the construction of decentralized near-optimizers in high-dimensional stochastic control problems. Our arguments are based primarily on functional inequalities and the notion of displacement convexity from optimal transport.more » « less
-
Abstract Motivated by conjectures in Mirror Symmetry, we continue the study of the real Monge–Ampère operator on the boundary of a simplex. This can be formulated in terms of optimal transport, and we consider, more generally, the problem of optimal transport between symmetric probability measures on the boundary of a simplex and of the dual simplex. For suitably regular measures, we obtain regularity properties of the transport map, and of its convex potential. To do so, we exploit boundary regularity results for optimal transport maps by Caffarelli, together with the symmetries of the simplex.more » « less
An official website of the United States government

