skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mass spectrometry imaging of Arabidopsis thaliana with in vivo D2O labeling
The commonly used analytical tools for metabolomics cannot directly probe metabolic activities or distinguish metabolite differences between cells and suborgans in multicellular organisms. These issues can be addressed byin-vivoisotope labeling and mass spectrometry imaging (MSI), respectively, but the combination of the two, a newly emerging technology we call MSIi, has been rarely applied to plant systems. In this study, we explored MSIiofArabidopsis thalianawith D2O labeling to study and visualize D-labeling in three classes of lipids: arabidopsides, chloroplast lipids, and epicuticular wax. Similar to other stress responses, D2O-induced stress increased arabidopsides in an hour, but it was relatively minor for matured plants and reverted to the normal level in a few hours. The D-labeling isotopologue patterns of arabidopsides matched with those of galactolipid precursors, supporting the currently accepted biosynthesis mechanism. Matrix-assisted laser desorption/ionization (MALDI)-MSI was used to visualize the spatiotemporal distribution of deuterated chloroplast lipids, pheophytina, MGDGs, and DGDGs, after growing day-after-sowing (DAS) 28 plants in D2O condition for 3–12 days. There was a gradual change of deuteration amount along the leaf tissues and with a longer labeling time, which was attributed to slow respiration leading to low D2O concentration in the tissues. Finally, deuterium incorporation in epicuticular wax was visualized on the surfaces of the stem and flower. The conversion efficiency of newly synthesized C30 aldehyde to C29 ketone was very low in the lower stem but very high at the top of the stem near the flower or on the flower carpel. This study successfully demonstrated that MSIican unveil spatiotemporal metabolic activities in various tissues ofA. thaliana.  more » « less
Award ID(s):
2150468
PAR ID:
10525418
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers Media SA
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
15
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencingCHUP1‐induced chloroplast stromules and amplified effector‐triggered immunity (ETI); however, the underlying mechanisms remain largely unknown.CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast‐associated actin (cp‐actin) filaments for blue light‐induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencingNbCHUP1inNicotiana benthamianaplants increased epidermal chloroplast de‐anchoring and basal movement but did not fully disrupt blue light‐induced chloroplast movement.SilencingNbCHUP1auto‐activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (H2O2). These findings show chloroplast anchoring restricts a multifaceted ECD response.Our results also show that the accumulated chloroplastic H2O2inNbCHUP1‐silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de‐anchoring and H2O2play separate but essential roles during ETI. 
    more » « less
  2. Abstract Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism at cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatio-temporal dynamics of lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization-MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over a 15-day time period. When they were partially labeled after 5 d, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain and the entire molecule. The temporal change in the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their mass spectrometry images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues and the newly grown daughter fronds. Besides, two additional labeling experiments, (i) 13CO2 labeling and (ii) backward labeling of completely 50% D2O-labeled L. minor in H2O media, confirm the observations in forward labeling. Furthermore, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling using MSI to provide spatio-temporal details in lipid biosynthesis in plant development. 
    more » « less
  3. SUMMARY Plant cuticles are a mixture of crystalline and amorphous waxes that restrict the exchange of molecules between the plant and the atmosphere. The multicomponent nature of cuticular waxes complicates the study of the relationship between the physical and transport properties. Here, a model cuticle based on the epicuticular waxes ofPetunia hybridaflower petals was formulated to test the effect of wax composition on diffusion of water and volatile organic compounds (VOCs). The model cuticle was composed of ann‐tetracosane (C24H50), 1‐docosanol (C22H45OH), and 3‐methylbutyl dodecanoate (C17H34O2), reflecting the relative chain length, functional groups, molecular arrangements, and crystallinity of the natural waxes. Molecular dynamics simulations were performed to obtain diffusion coefficients for compounds moving through waxes of varying composition. Simulated VOC diffusivities of the model system were found to highly correlate within vitromeasurements in isolated petunia cuticles. VOC diffusivity increased up to 30‐fold in completely amorphous waxes, indicating a significant effect of crystallinity on cuticular permeability. The crystallinity of the waxes was highly dependent on the elongation of the lattice length and decrease in gap width between crystalline unit cells. Diffusion of water and higher molecular weight VOCs were significantly affected by alterations in crystalline spacing and lengths, whereas the low molecular weight VOCs were less affected. Comparison of measured diffusion coefficients from atomistic simulations and emissions from petunia flowers indicates that the role of the plant cuticle in the VOC emission network is attributed to the differential control on mass transfer of individual VOCs by controlling the composition, amount, and dynamics of scent emission. 
    more » « less
  4. Abstract In this study, we present the probeSATE‐G3P‐N3as a novel tool for metabolic labeling of glycerolipids (GLs) to investigate lipid metabolism in yeast cells. By introducing a clickable azide handle onto the glycerol backbone, this probe enables general labeling of glycerolipids. Additionally, this probe contains a caged phosphate moiety at the glycerolsn‐3 position to not only facilitate probe uptake by masking negative charge but also to bypass the phosphorylation step crucial for initiating phospholipid synthesis, thereby enhancing phospholipid labeling. The metabolic labeling activity of the probe was thoroughly assessed through cellular fluorescence microscopy, mass spectrometry (MS), and thin‐layer chromatography (TLC) experiments. Fluorescence microscopy analysis demonstrated successful incorporation of the probe into yeast cells, with labeling predominantly localized at the plasma membrane. LCMS analysis confirmed metabolic labeling of various phospholipid species (PC, PS, PA, PI, and PG) and neutral lipids (MAG, DAG, and TAG), and GL labeling was corroborated by TLC. These results showcased the potential of theSATE‐G3P‐N3probe in studying GL metabolism, offering a versatile and valuable approach to explore the intricate dynamics of lipids in yeast cells. 
    more » « less
  5. Abstract Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important role in this process by disproportionating H2O2resulting from glycolate oxidation into O2and water. We hypothesize that catalase in the peroxisome also protects against nonenzymatic decarboxylations between hydrogen peroxide and photorespiratory intermediates (glyoxylate and/or hydroxypyruvate). We test this hypothesis by detailed gas exchange and biochemical analysis ofArabidopsis thalianamutants lacking peroxisomal catalase. Our results strongly support this hypothesis, with catalase mutants showing gas exchange evidence for an increased stoichiometry of CO2release from photorespiration, specifically an increase in the CO2compensation point, a photorespiratory‐dependent decrease in the quantum efficiency of CO2assimilation, increase in the12CO2released in a13CO2background, and an increase in the postillumination CO2burst. Further metabolic evidence suggests this excess CO2release occurred via the nonenzymatic decarboxylation of hydroxypyruvate. Specifically, the catalase mutant showed an accumulation of photorespiratory intermediates during a transient increase in rubisco oxygenation consistent with this hypothesis. Additionally, end products of alternative hypotheses explaining this excess release were similar between wild type and catalase mutants. Furthermore, the calculated rate of hydroxypyruvate decarboxylation in catalase mutant is much higher than that of glyoxylate decarboxylation. This work provides evidence that these nonenzymatic decarboxylation reactions, predominately hydroxypyruvate decarboxylation, can occur in vivo when photorespiratory metabolism is genetically disrupted. 
    more » « less