skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method
In the nested simulation literature, a common assumption is that the experimenter can choose the number of outer scenarios to sample. This paper considers the case when the experimenter is given a fixed set of outer scenarios from an external entity. We propose a nested simulation experiment design that pools inner replications from one scenario to estimate another scenario’s conditional mean via the likelihood ratio method. Given the outer scenarios, we decide how many inner replications to run at each outer scenario as well as how to pool the inner replications by solving a bilevel optimization problem that minimizes the total simulation effort. We provide asymptotic analyses on the convergence rates of the performance measure estimators computed from the optimized experiment design. Under some assumptions, the optimized design achieves [Formula: see text] mean squared error of the estimators given simulation budget [Formula: see text]. Numerical experiments demonstrate that our design outperforms a state-of-the-art design that pools replications via regression. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [Grant CMMI-2045400] and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2018-03755]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0392 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0392 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .  more » « less
Award ID(s):
2246281
PAR ID:
10525457
Author(s) / Creator(s):
;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
INFORMS Journal on Computing
ISSN:
1091-9856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In modeling battery energy storage systems (BESS) in power systems, binary variables are used to represent the complementary nature of charging and discharging. A conventional approach for these BESS optimization problems is to relax binary variables and convert the problem into a linear program. However, such linear programming relaxation models can yield unrealistic fractional solutions, such as simultaneous charging and discharging. In this paper, we develop a regularized mixed-integer programming (MIP) model for the optimal power flow (OPF) problem with BESS. We prove that, under mild conditions, the proposed regularized model admits a zero integrality gap with its linear programming relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP model, we show that its optimal solution is also near optimal to the original OPF problem with BESS, thereby providing a valid and tight upper bound for the OPF problem with BESS. The use of the regularized MIP model allows us to solve a trilevel [Formula: see text]-[Formula: see text]-[Formula: see text] network contingency problem, which is otherwise intractable to solve. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: N. Jiang (as a graduate student at the Georgia Institute of Technology) and W. Xie were supported in part by the National Science Foundation [Grant 2246414] and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0771 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0771 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  2. We present a novel approach aimed at enhancing the efficacy of solving both regular and distributionally robust chance constrained programs using an empirical reference distribution. In general, these programs can be reformulated as mixed-integer programs (MIPs) by introducing binary variables for each scenario, indicating whether a scenario should be satisfied. Whereas existing methods have focused predominantly on either inner or outer approximations, this paper bridges this gap by studying a scheme that effectively combines these approximations via variable fixing. By checking the restricted outer approximations and comparing them with the inner approximations, we derive optimality cuts that can notably reduce the number of binary variables by effectively setting them to either one or zero. We conduct a theoretical analysis of variable fixing techniques, deriving an asymptotic closed-form expression. This expression quantifies the proportion of binary variables that should be optimally fixed to zero. Our empirical results showcase the advantages of our approach in terms of both computational efficiency and solution quality. Notably, we solve all the tested instances from literature to optimality, signifying the robustness and effectiveness of our proposed approach. History: Accepted by Andrea Lodi/Design & Analysis of Algorithms — Discrete. Funding: This work was supported by Office of Naval Research [N00014-24-1-2066]; Division of Civil, Mechanical and Manufacturing Innovation [2246414]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0299 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0299 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  3. Sparse principal component analysis (SPCA) is designed to enhance the interpretability of traditional principal component analysis by optimally selecting a subset of features that comprise the first principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate solutions, typically achieved through tractable semidefinite programs or heuristic methods. To solve SPCA to optimality, we propose two exact mixed-integer semidefinite programs (MISDPs) and an arbitrarily equivalent mixed-integer linear program. The MISDPs allow us to design an effective branch-and-cut algorithm with closed-form cuts that do not need to solve dual problems. For the proposed mixed-integer formulations, we further derive the theoretical optimality gaps of their continuous relaxations. Besides, we apply the greedy and local search algorithms to solving SPCA and derive their first-known approximation ratios. Our numerical experiments reveal that the exact methods we developed can efficiently find optimal solutions for data sets containing hundreds of features. Furthermore, our approximation algorithms demonstrate both scalability and near-optimal performance when benchmarked on larger data sets, specifically those with thousands of features. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This research was supported in part by the Division of Civil, Mechanical and Manufacturing Innovation [Grant 224614], the Division of Computing and Communication Foundations [Grant 2246417], and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0372 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0372 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  4. This paper introduces a major redesign of SimOpt, a testbed of simulation-optimization (SO) problems and solvers. The testbed promotes the empirical evaluation and comparison of solvers and aims to accelerate their development. Relative to previous versions of SimOpt, the redesign ports the code to an object-oriented architecture in Python; uses an implementation of the MRG32k3a random number generator that supports streams, substreams, and subsubstreams; supports the automated use of common random numbers for ease and efficiency; includes a powerful suite of plotting tools for visualizing experiment results; uses bootstrapping to obtain error estimates; accommodates the use of data farming to explore simulation models and optimization solvers as their input parameters vary; and provides a graphical user interface. The SimOpt source code is available on a GitHub repository under a permissive open-source license and as a Python package. History: Accepted by Ted Ralphs, Area Editor for Software Tools. Funding: This work was supported by the National Science Foundation [Grant CMMI-2035086]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1273 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0011 ) at ( http://dx.doi.org/10.5281/zenodo.7468744 ). 
    more » « less
  5. Discrete-event simulation models generate random variates from input distributions and compute outputs according to the simulation logic. The input distributions are typically fitted to finite real-world data and thus are subject to estimation errors that can propagate to the simulation outputs: an issue commonly known as input uncertainty (IU). This paper investigates quantifying IU using the output confidence intervals (CIs) computed from bootstrap quantile estimators. The standard direct bootstrap method has overcoverage due to convolution of the simulation error and IU; however, the brute-force way of washing away the former is computationally demanding. We present two new bootstrap methods to enhance direct resampling in both statistical and computational efficiencies using shrinkage strategies to down-scale the variabilities encapsulated in the CIs. Our asymptotic analysis shows how both approaches produce tight CIs accounting for IU under limited input data and simulation effort along with the simulation sample-size requirements relative to the input data size. We demonstrate performances of the shrinkage strategies with several numerical experiments and investigate the conditions under which each method performs well. We also show advantages of nonparametric approaches over parametric bootstrap when the distribution family is misspecified and over metamodel approaches when the dimension of the distribution parameters is high. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [CAREER CMMI-1834710, CAREER CMMI-2045400, DMS-1854659, and IIS-1849280]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0044 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0044 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less