skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: The diapausing mosquito Culex pipiens exhibits reduced levels of H3K27me2 in the fat body
Abstract

Culex pipiens, the northern house mosquito, is a major vector of West Nile virus. To survive the severe winter, adult mosquitoes enter a diapause programme. Extended lifespan and an increase in lipid storage are key indicators of diapause. Post‐translational modifications to histone proteins impact the expression of genes and have been linked to the lifespan and energy utilisation of numerous insects. Here, we investigated the potential contribution of epigenetic alterations in initiating diapause in this mosquito species. Multiple sequence alignment of H3 sequences from other insect species demonstrates a high conservation of the H3 histone inCx. pipiensthroughout evolution. We then compared the levels of histone methylation in the ovaries and fat body tissues of diapausing and non‐diapausingCx. pipiensusing western blots. Our data indicate that histone methylation levels in the ovaries ofCx. pipiensdo not change during diapause. In contrast, H3K27me2 levels decrease more than twofold in the fat body of diapausing mosquitoes relative to non‐diapausing counterparts. H3K27 methylation plays a crucial role in chromosome activation and inactivation during development in many insect species. This is predominantly governed by polycomb repressor complex 2. Intriguingly, a previous ChIP‐seq study demonstrated that the transcription factor FOXO (Forkhead box O) targets the genes that comprise this complex. In addition, H3K27me2 exhibits dynamic abundance throughout the diapause programme inCx. pipiens, suggesting its potential role in the initial activation of the diapause programme. This study expands our understanding of the relationship between alterations in epigenetic regulation and diapause.

 
more » « less
Award ID(s):
1944214
PAR ID:
10525547
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Insect Molecular Biology
ISSN:
0962-1075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Culexmosquitoes are the primary vectors of West Nile virus (WNV) across the USA. Understanding when these vectors are active indicates times when WNV transmission can occur. This study determined the proportion of femaleCulexmosquitoes that were in diapause during the fall and winter and when they terminated diapause and began blood feeding in the spring.

    Methods

    Mosquitoes were collected from parks using various traps and/or aspirated from culverts in Franklin County, Ohio, from October to mid-May from 2019 to 2022.Culexmosquitoes were morphologically identified to species, and the ovaries of females were dissected to determine their diapause and parity statuses.

    Results

    By early October 2021, roughly 95% ofCulex pipienscollected in culverts were in diapause and 98% ofCx. erraticuswere in diapause. Furthermore, gravid and blood-fedCulex salinarius,Cx. pipiens, andCx. restuanswere collected in late November in 2019 and 2021 in standard mosquito traps. In the winter of 2021, the proportions of non-diapausingCulexdecreased within culverts. The last non-diapausingCx. erraticuswas collected in late December 2021 while the final non-diapausingCx. pipienswas collected in mid-January 2022, both in culverts. Roughly 50% ofCx. pipiensterminated diapause by mid-March 2022, further supported by our collections of gravid females in late March in all 3 years of mosquito collection. In fact, male mosquitoes ofCx. pipiens,Cx. restuans, andCx. territanswere collected by the 1st week of May in 2022, indicating that multiple species ofCulexproduced a second generation that reached adulthood by this time.

    Conclusions

    We collected blood-fed and gravidCulexfemales into late November in 2 of the 3 years of our collections, indicating that it might be possible for WNV transmission to occur in late fall in temperate climates like Ohio. The persistence of non-diapausingCx. pipiensandCx. erraticusthroughout December has important implications for the winter survival of WNV vectors and our overall understanding of diapause. Finally, determining whenCulexterminate diapause in the spring may allow us to optimize mosquito management programs and reduce the spread of WNV before it is transmitted to humans.

    Graphical Abstract 
    more » « less
  2. Females of the Northern house mosquito, Culex pipiens, enter an overwintering dormancy, or diapause, in response to short day lengths and low environmental temperatures. Diapausing female mosquitoes feed exclusively on sugar-rich products rather than human or animal blood, thereby reducing disease transmission. During diapause, Major Royal Jelly Protein 1 (MRJP1) is upregulated in females of Cx. pipiens. This protein is highly abundant in royal jelly, a substance produced by honey bees (Apis mellifera), that is fed to future queens throughout larval development and stimulates longevity and fecundity. However, the role of MRJP1 in Cx. pipiens is unknown. We investigated how supplementing the diets of both diapausing and nondiapausing females of Cx. pipiens with royal jelly affects gene expression, egg follicle length, fat content, protein content, longevity, and metabolic profile. We found that feeding royal jelly to long day-reared females significantly reduced the egg follicle lengths of females and switched their metabolic profiles to be similar to diapausing females. In contrast, feeding royal jelly to short day-reared females significantly reduced lifespan and switched their metabolic profile to be similar nondiapausing mosquitoes. Moreover, RNAi directed against MRJPI significantly increased egg follicle length of short day-reared females, suggesting that these females averted diapause, although RNAi against MRJP1 also extended the lifespan of short day-reared females. Taken together, our data show that consuming royal jelly reverses the seasonal responses of Cx. pipiens and that these responses are likely mediated in part by MRJP1. 
    more » « less
  3. Introduction

    Females of the Northern house mosquito,Culex pipiens, enter an overwintering dormancy, or diapause, in response to short day lengths and low environmental temperatures that is characterized by small egg follicles and high starvation resistance. During diapause,Culex pipiensMajor Royal Jelly Protein 1 ortholog (CpMRJP1) is upregulated in females ofCx. pipiens. This protein is highly abundant in royal jelly, a substance produced by honey bees (Apis mellifera), that is fed to future queens throughout larval development and induces the queen phenotype (e.g., high reproductive activity and longer lifespan). However, the role of CpMRJP1 inCx. pipiensis unknown.

    Methods

    We first conducted a phylogenetic analysis to determine how the sequence of CpMRJP1 compares with other species. We then investigated how supplementing the diets of both diapausing and nondiapausing females ofCx. pipienswith royal jelly affects egg follicle length, fat content, protein content, starvation resistance, and metabolic profile.

    Results

    We found that feeding royal jelly to females reared in long-day, diapause-averting conditions significantly reduced the egg follicle lengths and switched their metabolic profiles to be similar to diapausing females. In contrast, feeding royal jelly to females reared in short-day, diapause-inducing conditions significantly reduced lifespan and switched their metabolic profile to be similar nondiapausing mosquitoes. Moreover, RNAi directed againstCpMRJPIsignificantly increased egg follicle length of short-day reared females, suggesting that these females averted diapause.

    Discussion

    Taken together, our data show that consuming royal jelly reverses several key seasonal phenotypes ofCx. pipiensand that these responses are likely mediated in part by CpMRJP1.

     
    more » « less
  4. The Northern house mosquito (Culex pipiens) is a major vector of West Nile virus. To survive harsh conditions in winter adult females of Cx. pipiens enter a state of arrested reproductive development called diapause. Diapause is triggered by the short daylengths of late summer and early fall. The methods by which Cx. pipiens measures daylength are still unknown. However, it is suspected that clock genes, which provide information on daylength, may also regulate diapause. The proteins produced by these genes often cycle in abundance throughout the day in diapausing and nondiapausing insects. Two clock genes suspected to control diapause are cycle (cyc) and Par domain protein1 (Pdp1) as they encode circadian transcription factors that may regulate genes that are involved in diapause. Using Western blotting we measured the relative protein abundance of CYC and PDP1 throughout the day in the whole bodies and the heads of Cx. pipiens reared under either long-day, diapause-averting conditions or short-day, diapause-inducing conditions. We found that in whole bodies there was no significant oscillation of CYC or PDP1 abundance in both long day and short day-reared mosquitoes. In the heads of long day-reared mosquitoes both CYC and PDP1 cycled. In contrast, only PDP1 abundance showed diel differences in abundance in the heads of short day-reared mosquitoes. These data bring us one step closer to understanding the role that CYC and PDP1 may play in regulating diapause and other biological processes. 
    more » « less
  5. Abstract

    In diapausing mosquitoes, cold tolerance and prolonged lifespan are important features that are crucial for overwintering success. In the mosquito Culex pipiens, we suggest that PDZ domain-containing protein (PDZ) (post synaptic density protein [PSD95], drosophila disc large tumor suppressor [Dlg1], and zonula occludens-1 protein [zo-1]) domain-containing protein is involved with these diapause features for overwintering survival in Culex mosquitoes. The expression level of pdz was significantly higher in diapausing adult females in the early stage in comparison to their nondiapausing counterparts. Suppression of the gene that encodes PDZ by RNA interference significantly decreased actin accumulation in the midgut of early-stage adult diapausing females. Inhibition of pdz also significantly reduced the survivability of diapausing females which indicates that this protein could play a key role in preserving the midgut tissues during early diapause.

     
    more » « less