Reaction landscape of a mononuclear Mn III –hydroxo complex with hydrogen peroxide
The reaction of a mononuclear MnIII–hydroxo complex with hydrogen peroxide under different reaction conditions yields bis(μ-oxo)dimanganese(iii,iv), MnIII–hydroperoxo, and MnIII–peroxo intermediates.
more »
« less
- Award ID(s):
- 2154955
- PAR ID:
- 10525569
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 52
- Issue:
- 40
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 14350 to 14370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We calculate cross sections for fine-structure transitions of Ne+, Ar+, Ne2+, and Ar2+in collisions with atomic hydrogen by using quantum-mechanical methods. Relaxation rate coefficients are calculated for temperatures up to 10,000 K. The temperature-dependent critical densities for the relaxation of Ne+, Ar+, Ne2+, and Ar2+in collisions with H have been determined and compared to the critical densities for collisions with electrons. The present calculations will be useful for studies utilizing the infrared lines [Neii] 12.8, [Neiii] 15.6, [Neiii] 36.0, [Arii] 6.99, [Ariii] 8.99, and [Ariii] 21.8μm as diagnostics of, for example, planetary nebulae and star formation.more » « less
-
Abstract Manganese catalysts that activate hydrogen peroxide have seen increased use in organic transformations, such as olefin epoxidation and alkane C−H bond oxidation. Proposed mechanisms for these catalysts involve the formation and activation of MnIII‐hydroperoxo intermediates. Examples of well‐defined MnIII‐hydroperoxo complexes are rare, and the properties of these species are often inferred from MnIII‐alkylperoxo analogues. In this study, we show that the reaction of the MnIII‐hydroxo complex [MnIII(OH)(6Medpaq)]+(1) with hydrogen peroxide and acid results in the formation of a dark‐green MnIII‐hydroperoxo species [MnIII(OOH)(6Medpaq)]+(2). The formulation of2is based on electronic absorption,1H NMR, IR, and ESI‐MS data. The thermal decay of2follows a first order process, and variable‐temperature kinetic studies of the decay of2yielded activation parameters that could be compared with those of a MnIII‐alkylperoxo analogue. Complex2reacts with the hydrogen‐atom donor TEMPOH two‐fold faster than the MnIII‐hydroxo complex1. Complex2also oxidizes PPh3, and this MnIII‐hydroperoxo species is 600‐fold more reactive with this substrate than its MnIII‐alkylperoxo analogue [MnIII(OOtBu)(6Medpaq)]+. DFT and time‐dependent (TD) DFT computations are used to compare the electronic structure of2with similar MnIII‐hydroperoxo and MnIII‐alkylperoxo complexes.more » « less
-
Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at , a moderately lensed galaxy ( ) with an intrinsic UV magnitude of . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z⊙ < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M⊙. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before.more » « less
-
The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds.more » « less
An official website of the United States government

